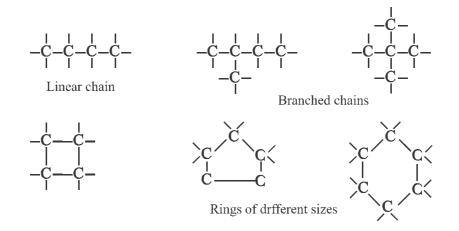
# UNIT : 20 BASIC PRINCILPLES OF ORGANIC CHEMISTRY Important Points

- The basic constituent of organic compound is carbon.
- The basic organic copounds in organic chemistry are Hydrocarbon,
- Hydrocarbon compounds comprise of carbon and Hydrogen.
- Variety of organic compound are obtained by subtitution of one or more hydrogen atom of hydrocarbon by element like nitrogen, oxygen, sulpher and halogen OR by functional group.
- So, organic chemistry consists of hydrocarbon and large variety of compounds obtained from the subsitution of their hydrogens.

### **Tetravalency of Carbon :**

The atomic number of carbon is 6 and hence, the number of electron in carbon is 6, so the electronic configuration is  $1s^2 2s^2 2p_x^{-1}$ ,  $2p_y^{-1} 2p_z^{-0}$ . Here the number of electrons in its outermost orbit are four. In order to attain a stable electronic configuration like inert gs carbon atom should either lose four electrons or gain four electrons. To achive this, a very large amount of energy is required. Consequently it cannot form C<sup>4+</sup> or C<sup>4+</sup> ion. However, the carbon atom shares four electrons with some elements and forms four covelentbonds.

Thus a carbon atom forms four covalent bonds in its compounds. For example, a molecule of methane  $(CH_4)$  is formed when four electrons of carbon are shared with four hydrogen atoms as shwon below :

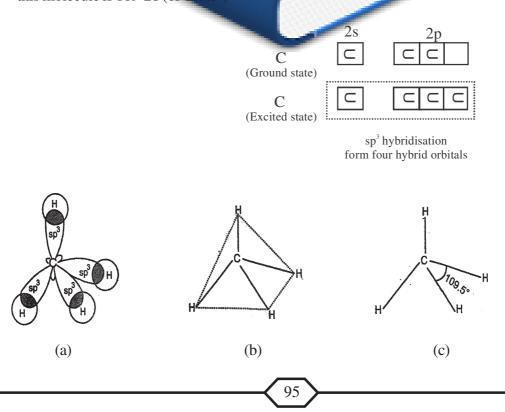



In a similar manar carbon can complete its octet by sharing its valence electrons with the electrons of atoms as well. This characteristic of carbon atom by virtue of which it forms four covalent bonds is generally referred to as tetracovalency of carbon.

## Catenation : a unique property of carbon :

One of the remarkable property of carbon atom is its unique capacity to form bonds with other carbon atoms. This property of forming bonds with atoms of the same element is called catenation. Carbon shows maximum catenation in its group (group 14) in the periodic table. This is because of the larger strength of carbon to carbon bond as compared to that of other atoms. For example, C-C bond is very strong (335 kJ mol<sup>-1</sup>) in comparison to Si-Si bond (220 kJ mol-1) or Ge-Ge bond (167 kJ mol-1). As a result, carbon atoms can link with each other to form either linear

chains of various lengths of branched chains and even rings of different sizes as shown below :




# **12.3. HYBRIDISATION AND SHAPES OF MOLECULES :**

i

We have studied in unit 4 that carbon atom forms four equivalent tetrahedral bonds because of hybridisation of its valence orbitals. This can explain the shapes of organic molecules. Let us recall the shapes of simple organic molecules on the basis of concept of hybridisation.

The carbon atoms in alkanes involve  $sp^3$  hybridisation. As a result, the four bonds formed by each carbon atom are directed towards the corners of a regular tetrahedron. For example, in case of methane (CH<sub>4</sub>), the carbon atom involves  $sp^3$  hybridisation and forms four  $sp^3$  hybrid orbitals. Each of these forms sigma bond by overlapping with 1s - orbitals of hydrogen. The four bonds are directed towards the corners of a regular tetrahedron as shown in Fig. The H-C-H bond angle in this molecule is 109°28 (or 109.5°)



```
1.
       sp<sup>3</sup> Hybridisation and shapes of alkanes
```

The structure of methane molecule is also shown in Fig.

In ethane (H3C-CH3) molecule, each carbon atom undergoes sp3 hybridisation. One of the four sp3 hybridorbitals of one carbon atom overlaps axially with simillar orbital of the other carbon atom to form C-C sigma bond. The remaining three hybrid orbitals belonging to both the carbon atoms overlap axially with the half filled orbitals of Hydrogen atoms to form C-H sigma bonds as shown in Fig.\_\_\_\_

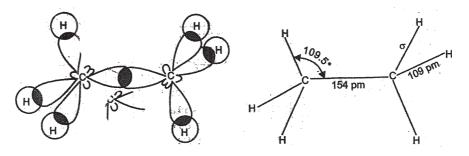
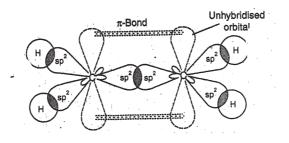
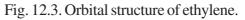



Fig. 12.2 Shape of ethane.

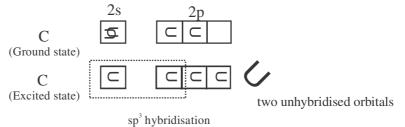
Thus, in ethene, C-C bond length is 154 pm and each C-H bond length is 109 pm.


2. sp2 Hybridisation and shapes of alkenes

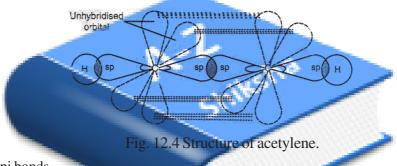

Alkenes are planar molecules and the carbon atoms of the C=C bond involve sp2-hybridisation. Carbon atom has four unpaired electrons in the excited state. The three orbitals (one 2s and two 2p) get hybridised to form three sp2 hybrid orbitals leaving one 2pz unhybridised orbital.



For example in the case of ethylene one sp2 hybrid orbital of one carbon atom overlaps with sp2 hybrid orbital of the other carbon atom to form C-C sigma bond. The remaining two sp2 - hybrid orbitals of both the carbon atoms overlap with 1 s-orbitals of two hydrogen atoms to form C-H sigma bonds.


The unhybridised orbital (shown dotted) participates in the formation of pi bond. The orbital structure of ethylene has been shown in fig.\_\_\_\_\_



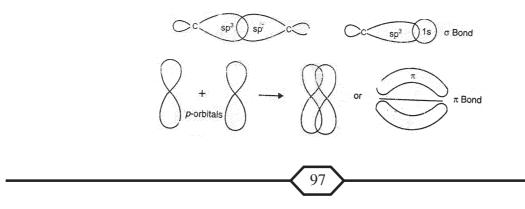



3. sp Hybridisation and shape of alkynes :

The two carbon atoms constituting the triple bond are sp-hybridised. In this, carbon undergoes sp-hybridisation forming two sp-hybrid orbitals. The two 2p-orbitals (2p, and 2pz) remain unhybridised.



For example, in the case of acetylene, one sp-hybrid orbital of one carbon atom overlaps with sp-hybridorbital of the second carbon atom and forms C-C sigma bond. The remaining sp-hybridorbital of each C-atom forms sigma bond with H-atom. Each of the unhybridised orbitals of one carbon atom forms bond with the second carbon atom so that there are two bonds in acetylene molecule. The structure of acetylene (ethyne) is shown in Fig. 12.4




Sigma and pi bonds

We have seen that ethylene molecule contains two bonds between carbon atoms, one is sigma bond and the other is pi bond. Similarly, in acetylene, there is one sigma, and two pi bonds between carbon atoms. We have already learnt about these types of bonds in Unit 6.

Sigma bond is formed by the end to end overlapping of bonding orbitals along the internuclear axis. This overlapping is known as head on overlap or axial overlap. For example, the overlapping of sp2 hybrid orbitals of two carbon atoms in ethylene or sp hybrid orbitals of two carbon atoms in acetylene.

Pi bond is formed by the sidewise overlapping and the half filled atomic orbitals of bonding atoms. This overlap is known as sidewise overlap or lateral overlap. In this case the atomic orbitals overlap in such a way that their axes remain parallel to each other and perpendicular to the internuclear and below the plane of the participating atoms.



Sigma bonds are stronger bonds than bonds because during the formation of bond, the overlapping of orbitals takes place to a larger extent.

Important features of Bonds : As already discussed, the double bond in ethylene molecule consists of a bond and a bond. The bond has some important features as listed below :

1. In ethylene, as discussed earlier, the two 2p (unhybridised) orbitals participating in the bond are parallel to each other. For the proper sidewise overlap of these 2p-orbitals, all the atoms in C2H4 molecule must be in same plane. Thus, the formation of bond restricts the molecule into a plannar shape. Therefore, ethylene is a flat or planar molecule.

2. Due to the bond formed by sidewise overlap of 2p-orbitals, the rotation of one CH2 fragment with respect to other will be hindered. The rotation of one carbon atom throug h 900 will break the bond because in that case, the unhybridised 2p-orbitals become perpendicular to each other and no sidewise overlap is possible. Hence, to rotation about the double bond is restricted or hindered. As a result, there are two distinct forms of molecules such as  $C_2H_2Cl_2$  as shown ahead :

7.5 Functional Groups:

An atom or group of atoms that determines the characteristic reaction of an organic compound is known as functional group. In alkane hydrocarbons due to their saturation they do not contain functional group for their characteristic reaction. The different compounds have the same functional group under similar reactions.

| Class of | Functional      | IUPAC                  | Examples                                                           | <b>TUPAC Name</b> |
|----------|-----------------|------------------------|--------------------------------------------------------------------|-------------------|
| compound | group           | group<br>prefix/suffix | isha                                                               | >                 |
| Alkane   | R-H             | -/ ane                 | CH <sub>3</sub> -CH <sub>3</sub>                                   | Ethane            |
|          |                 |                        | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>3</sub>                  | Propane           |
|          |                 |                        | CH <sub>3</sub> -CH <sub>2</sub> -CH <sub>2</sub> -CH <sub>3</sub> | Butane            |
| Alkane   | C=C             | _/ ene                 | CH <sub>2</sub> =CH <sub>2</sub>                                   | Eshene            |
|          |                 | _                      | CH <sub>3</sub> CH=CH <sub>2</sub>                                 | Propane           |
|          |                 |                        | CH <sub>2</sub> CH <sub>2</sub> CH=CH <sub>2</sub>                 | But-1-yne         |
|          |                 |                        | CH <sub>3</sub> CH=CH-CH <sub>3</sub>                              | But-2-yne         |
| Alkyne   | -C = C-         | -/ yne                 | HC = CH                                                            | Ethyne            |
|          |                 |                        | CH <sub>3</sub> -C=CH                                              | Propyne           |
|          |                 |                        | CH <sub>3</sub> CH <sub>2</sub> C=CH                               | But-1-ene         |
|          |                 |                        | CH <sub>3</sub> C=C CH <sub>3</sub>                                | But-2-ene         |
| Halide   | -X              | halo/-                 | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CI                 | 1-Chloropropane   |
|          | (-F,-CI,-Br,-I) |                        | CH <sub>3</sub> CH CH <sub>3</sub>                                 | 2-Chloropropane   |
|          |                 |                        | CI                                                                 |                   |
|          |                 |                        | CH <sub>3</sub> CHCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>  | 1-Chloropentane   |
|          |                 |                        | CI                                                                 |                   |
| Ether    | -OH             | alkoxy/-               | CH <sub>3</sub> OH                                                 | Methanol          |
|          |                 |                        | CH <sub>3</sub> CH <sub>2</sub> OH                                 | Ethanol           |
|          |                 |                        | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                 | Propan-1-ol       |
|          |                 |                        | CH <sub>3</sub> CHCH <sub>2</sub>                                  |                   |
|          |                 |                        | ОН                                                                 | Propan-2-ol       |

| Ether-O-alkoxy/- $CH_3-O-CH_3$<br>$CH_3-O-CH_2CH_3$<br>$CH_3-O-CH_2CH_3$<br>$CH_3-O-CH_2CH_3$<br>$CH_3-O-CH_2CH_3$<br>$CH_3-O-CH_2CH_3$<br>$CH_3-O-CH_2-CH_3$<br>$CH_3-O-CH_2-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-CH_3$<br>$CH_3-O-CH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RECH_3-O-RE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Class of<br>compound | Functional<br>group | IUPAC<br>group<br>prefix/suffix | Examples                                                             | TUPAC Name           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|---------------------------------|----------------------------------------------------------------------|----------------------|
| AldehydeCHCHCHEthoxy ethaneAldehyde-CHO-/alHCHOMethanalCarboxylie-CO/oneCH,COCH,<br>CH,COCH,CH,PropananoeKetone-CO/oneCH,COCH,CH,<br>CH,COCH,CH,PropanoneCarboxylie-COOH-/oic AcidHCOOHMethanoic acidAcid/oic AcidHCOOHMethanoic acidCarboxylie-COOR-/oiceHCOOHMethanoic acidAcid-CH,COOH,CH,Propanoic acidEstar-COOR-/oiceHCOOCH,<br>CH,COOH,CH,Methyl methanoateAmide-CONH,-/amideCH,COOH,CH,<br>CH,CONH,CH,EthaleniaceAmide-CONH,-/amideCH,CONH,<br>CH,CH,CH,NHEthaleniaceAmine-NH,(P)-i amine<br>(Primary)CH,CH,CH,NH<br>CH,CH,CH,NHPropanalideAmine-NH,(29)-/ amine<br>(Primary)CH,CH,CH,NH<br>CH,CH,CH,NHPropan-2-amine<br>NH-NH-(29)-/ amine<br>(Primary)CH,NCH,3<br>CH,CH,CH,NH<br>CH,CH,CH,NHN-nethyl ethanamine<br>methamineNitro-NO_2nitro/-CH,NCH,CH,<br>CH,NCH,CH,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ether                | -0-                 | alkoxy/-                        | CH <sub>3</sub> -O-CH <sub>3</sub>                                   | Methoxy methane      |
| Aldehyde-CHO-/alHCHOMethanalKetone-CO/oneCH_COCH_2CH_0PropanalKetone-CO/oneCH_COCH_2CH_3Butan-1-oneCarboxylic-COOH-/oic AcidHCOOHMethanoic acidAcid-/oic AcidHCOOHPropanoic acidCarboxylic-COOH-/oic AcidHCOOHMethanoic acidCarboxylic-COOH-/oic AcidHCOOCH_3Methyl methanoic acidCh_COOR-/oateHCOOCH_3Methyl ethanoateEstar-COOR-/oateCH_COOHEthannideAmide-CONH_3-/amideCH_CONH_3PropanamideAmine-NH_4(P)-amineCH_NH_5HethanaminePorpan-1-amineCH_CH_CNHPropanamidePropanamideAmine-NH_6(29)-/ amineCH_3NHCH_3N-methyl methanaminCH_5CH_2CH_2NH_2-NH-6(29)-/ amineCH_3NHCH_3N-methyl methanaminCH_7CH_2N_2CH_3CH_2NHCH_3N-N dimethyl methanaminCH_3NCH_2CH_3N-N dimethyl ethanaminNitro-NO_2nitro/-CH_3NCH_2CH_3N-N dimethyl ethanaminNitro-NO_2nitro/-CH_1CN_2NO_2NitroethaneCynideC=N-/intrileCH_1CNEthane nitrileOR-C=N-/intrileCH_1CNPropane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                                 | CH <sub>3</sub> -O-CH <sub>2</sub> CH <sub>3</sub>                   | Methoxy ethane       |
| Ketone-CO/oneCH,CHQ<br>CH,CHQ<br>CH,COCH,<br>CH,COCH,CH,<br>CH,COCH,CH,<br>CH,COCH,CH,<br>PropanoneEthanal<br>PropanalKetone-CO/oneCH,COCH,<br>CH,COCH,CH,<br>CH,COCH,CH,<br>CH,COCH,CH,<br>CH,COOHPropanone<br>Butan-1-one<br>CH,CH,COCH,CH,<br>Propanoic acidCarboxylic-COOH-/oic AcidHCOOH<br>CH,COOHMethanoic acid<br>Ethanoic acidAcid-/oic AcidHCOOH<br>CH,COOHEthanoic acid<br>Ethanoic acidEstar-COOR-/oateHCOOCH,<br>CH,COOCH,<br>CH,COOCH,<br>CH,COOCH,<br>CH,COOCH,<br>CH,COOCH,<br>EthanamideEthananice<br>Ethyl ethanoateAmide-CONH,<br>-/amide-/amideCH,COOCH,<br>CH,CNL,<br>CH,COOH,<br>CH,COOCH,<br>CH,CH,CNH,<br>PropanamideEthanamine<br>EthanamineAmine-NH.(P)-famine<br>(Primary)CH,CH,NH,<br>CH,CH,2NH,<br>CH,CH,2NH,<br>CH,CH,2NH,<br>CH,CH,2NH,<br>CH,CH,2NH,<br>Propan-1-amineN-N dimethyl ethanamin<br>ethanamine-NH-(29)-/amine<br>(Primary)CH,NHCH,<br>CH,CH,2NH,<br>CH,NCH,3N-N dimethyl ethanamin<br>ethanamineNitro-NO,2nitro/-CH,CH,2ND,<br>CH,3NCH,2CH,3N-N dimethyl ethanamine<br>ethamineNitro-NO,2nitro/-CH,CH,2ND,<br>CH,3CHCH,3ND,<br>CH,3CHCH,3ND,2Nitroethane<br>I-NitropropaneNitro-NO,2nitro/-CH,CN,2CN,2Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                                 | CH <sub>3</sub> -CH <sub>2</sub> -O-CH <sub>2</sub> -CH <sub>3</sub> | Ethoxy ethane        |
| Ketone-CO/oneCH,COCH,<br>CO-H,CCH,CH,APropanone<br>Butan-1-one<br>CH,COCH,CH,ACarboxylic-COOH-/oic AcidHCOOHButan-1-one<br>CH,CCOCH,CH,AAcid-/oic AcidHCOOHMethanoic acid<br>CH,COOHAcid-/oic AcidHCOOHEthanoic acid<br>CH,COOHEstar-COOR-/oateHCOOCH,<br>CH,COOCH,AMethyl methanoate<br>EthanoateEstar-COOR-/oateHCOOCH,<br>CH,COOCH,AMethyl methanoate<br>EthanoateAmide-CONH,<br>Propanice-/amideCH,COOH,<br>CH,CH,CNHEthanamide<br>EthanamineAmine-NH.(P)-tamine<br>(Primary)CH,CNH,2<br>CH,CH,2NH,2Propanamide-NH-(2º)-/ amine<br>(Primary)CH,CH,2NH,2<br>CH,CH,2NH,2N-methyl methanamine<br>Ethanamine-NH-(2º)-/ amine<br>(Primary)CH,SCH,2CH,3<br>CH,3CH,2CH,3N-N dimethyl ethanamine<br>CH,3Nitro-NQ,2nitro/-CH,3CH,2CH,3<br>CH,3CH,2CH,3N-N dimethyl ethanamine<br>rethanineNitro-NO,2nitro/-CH,CN,2CH,3<br>CH,3CH,2CN,3N-N dimethyl ethanamine<br>rethanineNitro-NO,2nitro/-CH,2CH,2NO,2<br>CH,3CH,2CN,3Nitroethane<br>NitroethaneQnide-C=N-/nitrileCH,2CN,2CN,3Nitroethane<br>Propane intrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aldehyde             | -CHO                | -/ al                           | НСНО                                                                 | Methanal             |
| Ketone-CO/one $CH_{1}COCH_{3}$<br>$CH_{3}COCH_{2}CH_{3}$<br>$CH_{2}COCH_{2}CH_{3}$<br>$CH_{2}COCH_{2}CH_{3}$<br>Pentan-3-onePropanone<br>Butan-1-one<br>Pentan-3-oneCarboxylic-COOH-/oic AcidHCOOH<br>$CH_{2}COOH$<br>$CH_{1}COOHMethanoic acidEthanoic acidAcid-/oic AcidHCOOHCH_{1}COOHPropanoic acidEstar-COOR-/oateHCOOCH_{3}CH_{1}COOCH_{3}Methyl methanoateEthyl ethanoateAmide-CONH-/amide-/amideCH_{1}COOH_{2}CH_{1}COOCH_{3}EthanamidePropanamideAmide-CONH-/amideCH_NH_{1}CH_{1}CONH_{2}CH_{1}CONH_{2}PropanamideAmineNH_{2}(P)-famine(Primary)CH_NH_{1}CH_{1}CH_{2}NH_{2}MethanaminePropanamideAmineNH_{2}(1)-famine(Primary)CH_{1}NHCH_{3}CH_{2}CH_{2}NH_{2}N-methyl methanaminePropan-2-amineN-methyl methanamineCH_{3}-NH-(2^0)-/ amine(Primary)CH_{3}NCH_{3}CH_{3}NCH_{3}N-N dimethyl ethanamineCH_{3}Nitro-NO_{2}nitro/-CH_{3}NCH_{2}CH_{3}CH_{3}NCH_{3}N-N dimethyl ethanaminePropaneNitro-NO_{2}nitro/-CH_{3}CH_{2}NO_{2}CH_{3}CHCH_{3}N-N dimethyl methanePropaneNitro-NO_{2}nitro/-CH_{3}CH_{2}NO_{2}CH_{3}CHCH_{3}N-N dimethylmethamineNitro-NO_{2}nitro/-CH_{3}CH_{2}NO_{2}CH_{3}CHCH_{3}N-N dimethylmethamineNitro-NO_{2}nitro/-CH_{3}CH_{2}CNCH_{3}CHCH_{3}2-Nitropropane$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                                 | CH <sub>3</sub> CHO                                                  | Ethanal              |
| Carboxylic<br>Carboxylic<br>Acid-COOH<br>-(oic AcidCH_COCH_2CH_3<br>CH_CH_2COCH_2CH_3Butan-1-one<br>Pentan-3-oneCarboxylic<br>Acid-COOH-/oic AcidHCOOH<br>CH_COOH<br>CH_COOHMethanoic acid<br>Ethanoic acidEstar-COOR-/oateHCOOCH_3<br>CH_COOCH_3Methyl methanoate<br>Methyl ethanoateAmide-CONH-/amide<br>CH_COOCH_3CH_COOCH_4<br>CH_COOCH_4Ethyl ethanoateAmide-CONH-/amide<br>CH_CONH_2CH_COOCH_2<br>CH_COOH_4Ethanamide<br>PropanamideAmineNH_2(P) - amine<br>(Primary)CH_NH_2<br>CH_CH_2CH_2NH_2Methanamine<br>Propan-2-amine<br>CH_3CH_2NHCH_3<br>CH_3CH_2NHCH_3Propan-2-amine<br>N-methyl ethanamine-NH-( $2^0$ )-/ amine<br>(Primary)CH_3NHCH_3<br>CH_3CH_2NHCH_3<br>CH_3NCH_2CH_3N-N dimethyl ethanamine<br>CH_3Nitro-NO_2nitro/-CH_3NLCH_2O_2<br>CH_3NCH_3<br>NO_2N-N dimethyl ethanamine<br>CH_3CH_2ND_2<br>CH_3CHCH_3<br>NO_2N-N dimethyl ethanamine<br>CH_3CH_2CNString-NO_2nitro/-CH_3CN<br>CH_3CH_2ND_2<br>CH_3CH_2ND_2N-N dimethyl ethane<br>rethanineNitro-NO_2nitro/-CH_3CN<br>CH_3CH_2ND_2<br>CH_3CH_2ND_2Nitroethane<br>CH_3CH_2CNCynide-C=N-/nitrileCH_3CN<br>CH_3CH_2CNEthane nitrile<br>Propane itrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                     |                                 | CH,CH,CHO                                                            | Propanal             |
| CH<br>Carboxylic<br>Acid-COOH<br>-/oic Acid-/oic AcidHCOOH<br>HCOOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH_CH<br>Hethyl ethanoateMethyl methanoate<br>Methyl ethanoate<br>CH_COOCH_CH<br>Hethyl ethanoateAmide<br>Amide-CONH<br>- 'amide<br>CH_COOCH_CH<br>CH_CH_CONH<br>CH_CH_CONH<br>CH_CH_CNH<br>CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NHCH<br>NH<br>Propan-1-amineMethanamine<br>Ethanamine<br>OR<br>Propan-1-amine-NH-<br>(2°)-/ amine<br>(Primary)CH_NHCH_3<br>CH_3CH CH_3<br>CH_3CH CH_3<br>CH_3CH_2NHCH<br>CH_3<br>CH_3CH_2NHCH<br>N-methyl methanamin<br>CH_3CH_2NHCH<br>N-methyl ethanamineN-N dimethyl ethanamine<br>N-methyl ethanamine<br>CH_3CH_2NA<br>CH_3N CH_3Nitro<br>Nitro-NO_2nitro/-CH_3CH_2NO_2<br>CH_3CHCH_3<br>NO_2Nitroethane<br>CH_3CHCH_3<br>CH_3CH2CH<br>CH_3CH2CH<br>NO_2Nitroethane<br>CH_3CH2CH<br>PropaneCynide<br>OR-C=N-/nitrileCH_3CN<br>CH_3CH2CNEthane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ketone               | -CO-                | -/one                           | CH <sub>3</sub> COCH <sub>3</sub>                                    | Propanone            |
| CH<br>Carboxylic<br>Acid-COOH<br>-/oic Acid-/oic AcidHCOOH<br>HCOOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH<br>CH_COOCH_CH<br>Hethyl ethanoateMethyl methanoate<br>Methyl ethanoate<br>CH_COOCH_CH<br>Hethyl ethanoateAmide<br>Amide-CONH<br>- 'amide<br>CH_COOCH_CH<br>CH_CH_CONH<br>CH_CH_CONH<br>CH_CH_CNH<br>CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NH<br>CH_CH_CH_NHCH<br>NH<br>Propan-1-amineMethanamine<br>Ethanamine<br>OR<br>Propan-1-amine-NH-<br>(2°)-/ amine<br>(Primary)CH_NHCH_3<br>CH_3CH CH_3<br>CH_3CH CH_3<br>CH_3CH_2NHCH<br>CH_3<br>CH_3CH_2NHCH<br>N-methyl methanamin<br>CH_3CH_2NHCH<br>N-methyl ethanamineN-N dimethyl ethanamine<br>N-methyl ethanamine<br>CH_3CH_2NA<br>CH_3N CH_3Nitro<br>Nitro-NO_2nitro/-CH_3CH_2NO_2<br>CH_3CHCH_3<br>NO_2Nitroethane<br>CH_3CHCH_3<br>CH_3CH2CH<br>CH_3CH2CH<br>NO_2Nitroethane<br>CH_3CH2CH<br>PropaneCynide<br>OR-C=N-/nitrileCH_3CN<br>CH_3CH2CNEthane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                                 | 5 5                                                                  | Butan-1-one          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                                 | 2 2 3                                                                | Pentan-3-one         |
| Image: Section of the section of t | Carboxylic           | -COOH               | -/oic Acid                      | 5 2 2 5                                                              | Methanoic acid       |
| Image: starImage: starCOR-/oateCH_3CH_2COHPropanoic acidEstar-COR-/oateHCOOCH_3Methyl methanoateAmide-CONH-/amideCH_3COOCH_2CHEthanamideAmide-CONH-/amideCH_3CONH_2EthanamideAmine-NH(IP) - amineCH_3CH_2NHEthanamineAmine-NH(IP) - famineCH_3CH_2NHMethanamineAmine-NH(IP) - famineCH_3CH_2NHBethanamineAmine-NH(IP) - famineCH_3CH_2NHBethanamineAmine-NH(IP) - famineCH_3CH_2NHBethanamine-NH(29) - famineCH_3NHCH_3N-methyl methanamin(Primary)CH_3NHCH_3N-methyl methanamin(Primary)CH_3NCH_2CH_3N-methyl ethanamin(19) - famineCH_3NCH_2CH_3N-N dimethyl ethanamin(19) - famineCH_3NCH_2CH_3N-N dimethyl ethanamin(19) - famineCH_3CH_2NO_2Nitroethane(19) - famineCH_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acid                 |                     |                                 | СН,СООН                                                              | Ethanoic acid        |
| Estar-COOR-/oateHCOOCH3<br>CH3COOCH4Methyl methanoate<br>Methyl ethanoateAmide-CONH-/amideCH3COOCH4<br>CH3COOCH2CH4Methyl ethanoate<br>Ethyl ethanoateAmide-CONH-/amideCH3CONH2<br>CH4CH3CONH2Ethanamide<br>PropanamideAmineNH2(19) -/amine<br>(Primary)CH3CNH2<br>CH3CH2CH2NH2Methanamine<br>EthanamineAmineNH2(19) -/amine<br>(Primary)CH3CH2NH2<br>CH3CH2CH2NH2Methanamine<br>Propanamide-NH-(29) -/ amine<br>(Primary)CH3CH2CH2NH2<br>CH3CH2CH2NHCH3<br>CH3<br>CH3<br>CH3Propan-1-amine<br>N-methyl methanamin<br>N-methyl methanamine<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3<br>CH3CH2CH3N-N dimethyl methanamin<br>methanineNitro-NO2nitro/-CH3CH2CH3<br>CH3CH2CH3<br>NO2N-N dimethyl<br>methanineNitro-NO2nitro/-CH3CH2CH2NO2<br>CH3CH2CH3<br>NO2Nitroethane<br>2-NitropropaneCynide-C=N-/nitrileCH3CN<br>CH3CH2CNEthane nitrile<br>Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                                 | 5                                                                    | Propanoic acid       |
| Amide-CONH_1-/amideCH_3COOCH_3<br>CH_3COOCH_2CH_3Methyl ethanoate<br>Ethyl ethanoateAmide-CONH_1-/amideCH_3CONH_2<br>CH_4CH_3CONH_2Ethanamide<br>PropanamideAmineNH_2(P) / amine<br>(Primary)CH_3CH_2NH_2<br>CH_3CH_2CH_2NH_2Methanamine<br>EthanamineAmineNH_2(P) / amine<br>(Primary)CH_3CH_2NH_2<br>CH_3CH_2CH_2NH_2Methanamine<br>Propanamine OR<br>Propan-1-amine-NH- $(2^0)$ / amine<br>(Primary)CH_3NHCH_3<br>CH_3CH_2NHCH_3<br>CH_3CH_2NHCH_3N-N dimethyl methanamin<br>N-methyl methanamin<br>CH_3N CH_3Nitro-N- $(3^0)$ -/amine<br>(Tertiary)CH_3NCH_2CH_3<br>CH_3N CH_3N-N dimethyl ethanamin<br>methamineNitro-NO_2nitro/-CH_3CH_2NO_2<br>CH_3CH_2CH_2NO_2<br>CH_3CHCHCH_3Nitroethane<br>1-NitropropaneNitro-NO_2nitro/-CH_3CN<br>CH_3CH_2CN2-NitropropaneCynide-C=N-/nitrileCH_3CN<br>CH_3CH_2CNEthane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Estar                | -COOR               | -/oate                          | 3 4                                                                  |                      |
| Amide-CONH/amideCH_COOCH_CH_3Ethyl ethanoateAmide-CONH/amideCH_CONH.EthanamideAmine-NH.(1%)-/amineCH_NH2Methanamine(Primary)CH_CH_2CONH.MethanamineEthanamine(Primary)CH_CH_2CH_2NH2I-Propanamide ORPropan-1-amineCH_3CH CH.Propan-1-amine-NH-(2%)-/amineCH_3NHCH3N-methyl methanamine(Primary)CH_3NHCH3N-methyl methanamineCH3CH3CH3N-methyl methanamine-NH-(3%)-/amineCH3NCH2CH3N-N dimethyl ethanamine(Tertiary)CH3NCH2CH3N-N dimethyl ethanamineNitro-NO2nitro/-CH3CH2NO2NitroethaneNitro-NO2nitro/-CH3CN2-NitropropaneCynide-C=N-/nitrileCH3CNEthane nitrileOR-C=N-/nitrileCH3CNEthane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                                 | 5                                                                    | •                    |
| Amide-CONH,-/amideCH_3CONH,<br>CH_3CH_2CONH_2EthanamideAmine-NH_2(P)-/amineCH_3NH_2Methanamine(Primary)CH_3CH_2NH_2HethanamineEthanamine(Primary)CH_3CH_2NH_2I-Propanamide ORPropan-1-amineCH_3CH CH_NH_2Propan-1-amine-NH-(2°)-/amineCH_3CH_2NHCH_3N-methyl methanamin(Primary)CH_3CH_2NHCH_3N-methyl methanamin-NH-(3°)-/amineCH_3NCH_2CH_3N-N dimethyl ethanamin(Tertiary)CH_3NCH_2CH_3N-N dimethyl ethanineNitro-NO_2nitro/-CH_3CH_2NO_2<br>CH_3CH_2CH_3NO_2NitroethaneNitro-NO_2nitro/-CH_3CH_2NO_2<br>CH_3CH_2CH_3NO_2NitroethaneCynide-C=N-/nitrileCH_3CNEthane nitrileOR-C=N-/nitrileCH_3CN<br>CH_3CH_2CNPropane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     |                                 |                                                                      | 2                    |
| Amine-NH2(P) amine $CH_3CH_2CONH2$ PropanamideAmine(P) amine $CH_3NH2$ MethanamineEthanamine(Primary) $CH_3CH_2NH_2$ 1-Propanamine ORPropan-1-amine $CH_3CH CH_2$ 1-Propanamine ORPropan-1-amine $CH_3CH CH_2$ Propan-2-amine-NH- $(2^0)$ -/ amine $CH_3NHCH_3$ N-methyl methanamine(Primary) $CH_3CH_2NH2$ N-methyl ethanamine-NH- $(2^0)$ -/ amine $CH_3NCH_2CH_3$ N-methyl ethanamine(Primary) $CH_3NCH_2CH_3$ N-N dimethyl ethanamine(Tertiary) $CH_3NCH_2CH_3$ N-N dimethyl ethaninineNitro-NO2nitro/- $CH_3CH_2NO2$ NitroethaneNitro-NO2 $nitro/ CH_3CH_2NO_2$ NitroethaneOR-C=N-/nitrile $CH_3CN$ Ethane nitrileOR-C=N-/nitrile $CH_3CH_2CN$ Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amide                | -CONH               | -/ amide                        |                                                                      | •                    |
| Amine $\cdot$ NH2 $(\Pi^0)'$ amine<br>(Primary) $CH_1NH2$<br>$CH_3CH2NH2$ Methanamine<br>EthanamineAmine(Primary) $CH_3CH2NH2$ $H_2OH2OH2NH2$ $H_2OP2OP2AP2$ $\cdot$ NH2 $CP3OP2AP2AP2$ $H_2OP2AP2AP2AP2$ $H_2OP2AP2AP2AP2AP2AP2AP2AP2AP2AP2AP2AP2AP2AP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     | _ r                             |                                                                      | Propanamide          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Amine                | -NH <sub>2</sub>    | (1 <sup>0</sup> )-/amine        |                                                                      |                      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 2                   |                                 |                                                                      | Ethanamine           |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                     |                                 |                                                                      | -1-Propanamine OR    |
| $\begin{tabular}{ c c c c c } \hline CH_3CH CH_3 & CH_3CH CH_3 & Propan-2-amine \\ Propan-2-amine \\ NH- & (2^0)-/amine & CH_3NHCH_3 & N-methyl methanamin \\ (Primary) & CH_3CH_2NHCH_3 & N-methyl ethanamine \\ CH_3 & CH_3 & N-N dimethyl ethamine \\ (3^0)-/amine & CH_3NCH_2CH_3 & N-N dimethyl ethamine \\ (Tertiary) & CH_3 & CH_3N CH_3 & N-N dimethyl methamine \\ \hline CH_3N CH_3 & N-N dimethyl methamine \\ \hline Nitro & -NO_2 & nitro/- & CH_3CH_2NO_2 & Nitroethane \\ & & & & & & & & & & & \\ & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                                 |                                                                      |                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     | · · · ·                         | CH_CH CH                                                             | 1                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                                 | 5                                                                    | Propan-2-amine       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | -NH-                | $(2^{0})$ -/ amine              |                                                                      | N-methyl methanamin  |
| -N- $(3^{0})$ -/amine<br>$(Tertiary)$ $CH_{3}$<br>$CH_{3}NCH_{2}CH_{3}$<br>$CH_{3}NCH_{2}CH_{3}$ N-N dimethyl ethamin<br>methamineNitro-NO_{2}nitro/- $CH_{3}CH_{2}NO_{2}$<br>$CH_{3}CH_{2}CH_{2}NO_{2}$<br>$CH_{3}CH_{2}CH_{2}NO_{2}$<br>$CH_{3}CHCH_{3}$<br>$NO_{2}$ Nitroethane<br>1-NitropropaneVitro-C=N-/nitrile $CH_{3}CN$<br>$CH_{3}CH_{2}CNEthane nitrilePropane nitrile$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     |                                 | 5 5                                                                  | 2                    |
| -N-(3°)-/amine<br>(Tertiary)CH_3NCH_2CH_3<br>CH_3N-N dimethyl ethamin<br>methamineNitro-NO2nitro/-CH_3CH_2NO2<br>CH_3CH_2CH_2NO2<br>CH_3CH2CH2NO2<br>CH_3CH2CH2NO2<br>CH_3CH2CH2NO2<br>CH_3CH2CH2NO2<br>CH_3CH2CH3Nitroethane<br>1-NitropropaneCynide-C=N-/nitrileCH_3CN<br>CH_3CH2CNEthane nitrile<br>Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                                 | 5 2 5                                                                |                      |
| $\begin{array}{c c c c c c c } & (Tertiary) & CH_3 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | -N-                 | $(3^{0})$ -/amine               | 5                                                                    | N-N dimethyl ethamin |
| Nitro-NO2nitro/-CH3N CH3N-N dimethyl<br>methamineNitro-NO2nitro/-CH3CH2NO2NitroethaneCH3CH2CH2NO21-Nitropropane1-NitropropaneCH3CHCH3NO22-NitropropaneCynide-C=N-/nitrileCH3CNEthane nitrileOR-/nitrileCH3CH2CH2NOPropane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                     |                                 |                                                                      |                      |
| Nitro-NO2nitro/-CH3CH2NO2NitroethaneNitro-NO2nitro/-CH3CH2CH2NO21-NitropropaneCH3CH2CH2NO2CH3CHCH3-1-NitropropaneCynide-C=N-/nitrileCH3CNEthane nitrileOR-/nitrileCH3CH2CNPropane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     | (1010101))                      | 5                                                                    | N-N dimethyl         |
| Cynide     -C=N     -/nitrile     CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> NO <sub>2</sub><br>CH <sub>3</sub> CHCH <sub>3</sub><br>NO <sub>2</sub> 1-Nitropropane       Cynide     -C=N     -/nitrile     CH <sub>3</sub> CN<br>CH <sub>3</sub> CH <sub>2</sub> CN     Ethane nitrile       OR     -/nitrile     CH <sub>3</sub> CH <sub>2</sub> CN     Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                                 |                                                                      |                      |
| Cynide     -C=N     -/nitrile     CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> NO <sub>2</sub><br>CH <sub>3</sub> CHCH <sub>3</sub><br>NO <sub>2</sub> 1-Nitropropane       Cynide     -C=N     -/nitrile     CH <sub>3</sub> CN<br>CH <sub>3</sub> CH <sub>2</sub> CN     Ethane nitrile       OR     -/nitrile     CH <sub>3</sub> CH <sub>2</sub> CN     Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitro                | -NO <sub>2</sub>    | nitro/-                         | CH <sub>2</sub> CH <sub>2</sub> NO <sub>2</sub>                      | Nitroethane          |
| Cynide     -C=N     -/nitrile     CH <sub>3</sub> CHCH <sub>3</sub><br>NO <sub>2</sub> 2-Nitropropane       Cynide     -C=N     -/nitrile     CH <sub>3</sub> CN<br>CH <sub>3</sub> CH <sub>2</sub> CN     Ethane nitrile       OR     -/nitrile     CH <sub>3</sub> CH <sub>2</sub> CN     Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 2                   |                                 | 5 2 2                                                                | 1-Nitropropane       |
| Cynide<br>OR-C=N-/nitrileCH3CN<br>CH3CH2CN2-NitropropaneCynide<br>OR-C=N-/nitrileCH3CN<br>CH3CH2CNEthane nitrile<br>Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                                 |                                                                      |                      |
| Cynide<br>OR-C=N<br>-/ nitrile-/ nitrile<br>$CH_3CN_2CN$ Ethane nitrile<br>Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                     |                                 | 5 5                                                                  | 2-Nitropropane       |
| OR CH <sub>3</sub> CH <sub>2</sub> CN Propane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cynide               | -C=N                | _/nitrile                       | 2                                                                    |                      |
| 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                    |                     |                                 | 5                                                                    |                      |
| Nume $CH_3CH_2CH_2CN$ Butane nitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                     |                                 |                                                                      | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INITILE              |                     |                                 | $CH_3CH_2CH_2CN$                                                     | Butane nitrile       |

# 7.6 Homologus Series

A series of organic compounds having same functional group in which two successive members differ from each other by fixed number of carbon and hydrogen (CH<sub>2</sub>). Such series of organic compounds is known as homologus series. Almost all types of organic compounds form homologus series and they have similar chemical characteristics e.g.  $CH_4$ ,  $C_2H_6$ ,  $C_3H_6$ ,  $C_3H_8$  etc.

# 7.6.1. Characteristics of Homologus series :

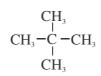
- (1) The elements and functional group present in compound of a homologus series are same.
- (2) Each member of the series can be expressed by common molecular formula. For example, each member of alkane series can be indicated by a common formula  $C_n H_{2n+2}$ .
- (3) The difference between the molecular formula of two successive members of the series will be of  $CH_2$ .
- (4) The difference between the molecular weights of two successive members of a series will be of 14 amu (u).
- (5) The name of each member of a series begins either with a common prefix orsuffix.
- (6) The chemical reactions of each member of series are same are same if the functional group present in them is same and their methods of preparation are also the same.
- (7) As the number of carbon and hydrogen atoms increase with member of a given series the molecular mass of the members increases. Hence there will be gradual change in the properties of the members which depend upon their molecular mass which include boliling point, melting point, density, solubility etc. The characteristics homologous series of alkane compounds are given in table 7.2.

| Name of | Molecular                     | Molecular | Melting              | Bolling               | State       |
|---------|-------------------------------|-----------|----------------------|-----------------------|-------------|
| Alkane  | formula                       | mass      | poing <sup>0</sup> K | polint <sup>0</sup> K |             |
|         | ~                             | gram/mole |                      |                       |             |
| Methane | CH <sub>4</sub>               | 16        | 91                   | 109                   | gas         |
| Ethane  | C <sub>2</sub> H <sub>6</sub> | 30        | 87                   | 184                   | gas         |
| Propane | C <sub>3</sub> H <sub>8</sub> | 44        | 83                   | 231                   | gas         |
| Butane  | $C_4H_{10}$                   | 58        | 135                  | 272.5                 | gas         |
| Pentane | C5H12                         | 72        | 143                  | 309                   | gas, liquid |

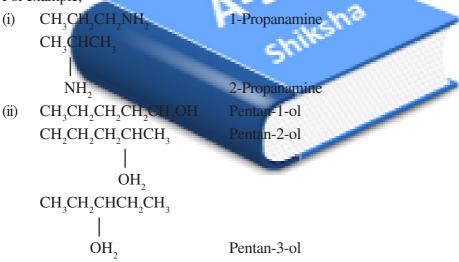
Characteristics of homologous series of alkanes.

# 7.7 Isomerism

The organic compounds having the same molecular formula but different structures are called isomers. This phemenon is called isomerism. The isomers have been classified mainly in two types depending upon their differences in structural aspects :


- (1) Structural isomerism
- (2) stereo isomerism
- 7.7.1. Structural Isomerism : Structural isomerism is a result of different arrangements of atoms or groups of atoms in molecules or organic compounds having same molecular formula. Hence, the organic compounds having same molecular formula but different structures are called structural isomers and and phenomenon as structural isomerism. There are five different types of structural isomerism :

(1) Skeletal or chain isomerism (2) Position isomerism (3) Functional group isomerism (4) Metamerism(5) Tautomerism.


(1) Skeletal or chain isomerism : The organic compounds having same molecular formula but arrangement of carbon atoms in a linear or branch are different ; such type of isomerism is called chain isomerism. Methane, ethane and propane do not exhibit chain isomeism but butane has two isomers. Pentane has three isomers, hexane has give isomers. For example three isomers of pentane are given below.

CH<sub>2</sub>

- (i) n-pentane  $CH_3CH_2CH_2CH_2CH_3$ (ii) 2-methyl butane  $CH_3CHCH_2CH_3$
- (iii) 2,2 dimethyl propane



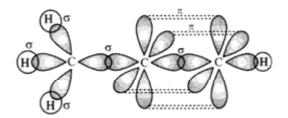
(2) Position isomerism : Organic compounds have same molecular formula and similar carbon chain but differ in the position of functional group. This type of isomerism is called position isomerism. For example,



(3) Functional group isomerism : The organic compounds having the same molecular formula but different functional groups are called functional isomers and this phenomenon is called functional group isomerism; for example,

| (i)   | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH | CH <sub>3</sub> -O-CH <sub>2</sub> CH <sub>3</sub> |
|-------|----------------------------------------------------|----------------------------------------------------|
|       | propan-1-ol                                        | methoxy ethane                                     |
| (ii)  | CH <sub>3</sub> CH <sub>2</sub> CHO                | CH <sub>3</sub> -CO-CH <sub>3</sub>                |
|       | propanal                                           | propanone                                          |
| (iii) | CH <sub>3</sub> CH <sub>2</sub> COOH               | CH <sub>3</sub> -COO-CH <sub>3</sub>               |
|       | propanoic acid                                     | methyl ethanoate                                   |

|     |                        | M.C                                                     | 2.Q.                     |                            |
|-----|------------------------|---------------------------------------------------------|--------------------------|----------------------------|
| 1.  | Which type of bond     | can carbon form?                                        |                          |                            |
|     | (a) ionic              | (b) covalent                                            | (c) metallic             | (d) vanderwals             |
| 2.  | Why carbon cannot      | t form $C^{+4}$ or $C^{-4}$ ion ?                       |                          |                            |
|     | (a) require high ioniz | ation enthalpy                                          | (b) require high elect   | ron gain enthalpy          |
|     | (c) both a and b       |                                                         | (d) High electron neg    | ativity                    |
| 3.  | In which state C car   | n show tetra valency ?                                  |                          |                            |
|     | (a) ground state       | (b) transition state                                    | (c) excited state        | (d) all the above          |
| 4.  | How many unpaired      | l electrons are present in                              | ground state?            |                            |
|     | (a) 1                  | (b) 2                                                   | (c) 3                    | (d) 4                      |
| 5.  | How many unpaired      | l electrons are present in                              | excited state?           |                            |
|     | (a) 1                  | (b) 2                                                   | (c) 3                    | (d) 4                      |
|     |                        | Shape of r                                              | nolecules                |                            |
| 6.  | Which molecule has     | longest carbon chain ?                                  |                          |                            |
|     | (a) Neopentane         | (b) Isopentane                                          | (c) Neohexane            | (d) n- pentane             |
| 7.  | Which molecule all     | the least C-C distance ?                                |                          |                            |
|     | (a) $C_2 H_6$          | (b) C <sub>2</sub> H <sub>4</sub>                       | (c) $C_2 H_2$            | (d) $C_4H_8$               |
| 8.  |                        | f C – C bond length in                                  |                          |                            |
|     | (a) 154 pm             | (b) 139 pm                                              | (c) 134 pm               | (d) 120 pm                 |
| 9.  | -                      | cur by the overlapping c                                |                          | /h                         |
| 10  | (a) s - orbitals       | (b) p-orbitals                                          | (c) $sp^2$ – orbitals    | (d) sp – orbitals          |
| 10. | Look at the figure g   | iven below and select th                                | e right option.          |                            |
|     | • •                    | orbitals and their side w<br>$\pi$ - bonds concentrated | vise overlapping forms   | two π - bonds.             |
|     | (c) c and d are two    | electron clouds of one $\pi$                            | t - bond and it is forme | d by the side wise overlap |


- (d) c and d are two  $\sigma$  bonds formed by the lateral overlap of two  $p_z$  orbitals.
- 11. In  $C_6H_6$  and  $C_2H_4$ , the  $\angle H C H$  and are respectively \_\_\_\_\_\_.

(a)  $120^{\circ}$ ,  $120^{\circ}$  (b)  $120^{\circ}$ ,  $90^{\circ}$  (c)  $120^{\circ}$ ,  $109^{\circ}28'$  (d)  $180^{\circ}$ ,  $190^{\circ}28'$ 

110

between two  $p_z$  orbitals.

12. Which of the following is incorrect for the following structure



- (1) C having CH<sub>3</sub> bond in the molecule is in sp<sup>3</sup> hybridisation and so all the sp<sup>3</sup> hybride orbital and used in  $\sigma$  bonds.
- (2) That 4C H and 2C C type bonds are present in the molecule.
- (3) The molecule becomes planar triangular because of two  $\sigma$  bonds having sp hybridization two bonds in which bond angle is 120°.
- (4) The H-C-C angle is 109° 28' because of sp<sup>3</sup> hybridization of –CH<sup>3</sup> group in C in the whole molecule but the other two C with it are in sp hybridation and so linear and joined by triple bond.

13. The compound in which carbon uses only its sp<sup>3</sup> hybrid orbitals for bond formation is (a) HCOOH (b)  $(NH_2)_2CO$  (c)  $(CH_3)_3$  COH (d)  $(CH_3)_3$  CHO

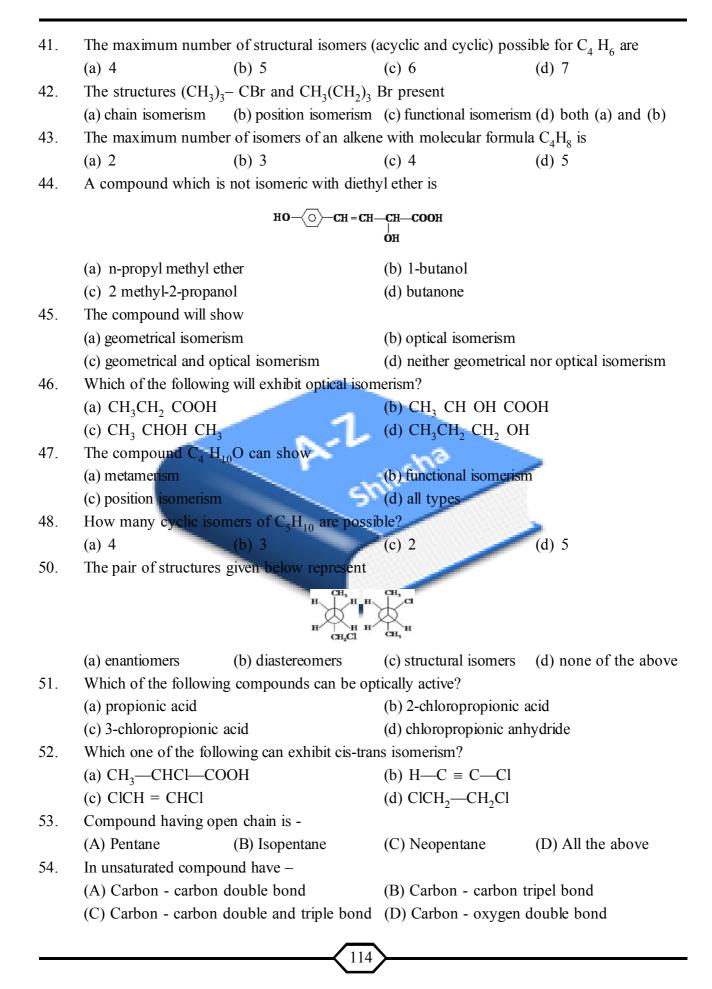
Hybridization

14. The bond between carbon atom (1) and carbon atom (2) in compound  $N = C - CH = CH_2$ involves the hybridised carbon as (a) sp<sup>2</sup> and sp<sup>2</sup> (b) sp<sup>3</sup> and sp (c) sp and sp<sup>2</sup> (d) sp and sp

15. Number of electrons in cyclobutadienyl anion  $(C_4H_4)^{-2}$  is (a) 2 (b) 4 (c) 6 (d) 8

- 16. Homolytic fission of C C bond in ethane gives an intermediate in which carbon is (a)  $sp^3$  hybridized (b)  $sp^2$  hybridized (c) sp hybridized (d)  $sp^2$ d hybridized
- 17. A straight chain hydrocarbon has the molecular formula  $C_8H_{10}$ . The hybridisation for the carbon atoms from one end of the chain to the other are respectively sp<sup>3</sup>, sp<sup>2</sup>, sp<sup>2</sup>, sp<sup>3</sup>, sp<sup>2</sup>, sp<sup>2</sup>, sp and sp. The structural formula of the hydrocarbon would be
  - (a)  $CH_3 C \equiv C CH_2 CH = CH CH = CH_2$
  - (b)  $CH_3 CH_2 CH = CH CH_2 C \equiv C CH = CH_2$
  - (c)  $CH_3 CH = CH CH_2 C \equiv C CH = CH_2$
  - (d)  $CH_3 CH = CH CH_2 CH = CH C \equiv CH$
- 18. The enolic form of acetone contains
  - (a) 8 $\sigma$ bonds, 2 $\pi$ -bonds and 1 lone pairs (b) 9 $\sigma$ bonds, 1 $\pi$  bond and 2 lone pairs
  - (c) 9 $\sigma$ -bonds, 2 $\pi$ -bonds and 1 lone pairs (d) 10 $\sigma$ -bonds, 1 $\pi$ -bonds and 1 lone pairs
- 19. During the addition reaction of ethane, which type of change in hybridization of carbon atom takes place ?

(a) 
$$sp^2$$
 to  $sp^3$  (b)  $sp^3$  to  $sp^2$  (c)  $sp$  to  $sp^2$  (d)  $sp^3$  to  $sp$ 


mirror\Desktop\\CHEMISTRY\Unit - 9 Chemistry Apurav (2nd Proof)

- 20. When the hybridization state of carbon changes from sp<sup>3</sup> to sp<sup>2</sup> and finally to sp, the angle between the hybridized orbitals
  - (a) decreases (b) increases and decreases
  - (c) is not affected (d) increases progressively
- 21. Match the following : (More than one option in column II may match with single option in column-I). Match the hybridization state of below listed carbon atoms.

|           | $CH_2 = C = CH -$                                                         | $CH_2 - C ? C - CH_2$                                                                                                                              | $_2 - \mathrm{NH}_2$             |                                  |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|--|--|--|--|--|
|           | Column - I                                                                | Column - II                                                                                                                                        |                                  |                                  |  |  |  |  |  |
|           | Carbon atoms                                                              | Hybridization stat                                                                                                                                 | te                               |                                  |  |  |  |  |  |
|           | (A) $C_1$                                                                 | (P) sp                                                                                                                                             |                                  |                                  |  |  |  |  |  |
|           | $(B) C_2$                                                                 | (Q) sp2                                                                                                                                            |                                  |                                  |  |  |  |  |  |
|           | (C) $C_5$                                                                 | (R) sp <sup>3</sup><br>(S) dsp <sup>2</sup>                                                                                                        |                                  |                                  |  |  |  |  |  |
|           | (D) $C_6$<br>(a) $A = R$                                                  | B = P                                                                                                                                              | C = Q                            | $\mathbf{D} = \mathbf{P}$        |  |  |  |  |  |
|           | (a) $A = R$<br>(b) $A = P$                                                | $\mathbf{B} = \mathbf{P}$                                                                                                                          | C = Q<br>C = Q                   | D = P<br>D = R                   |  |  |  |  |  |
|           | (b) $A = 1$<br>(c) $A = R$                                                | B = P                                                                                                                                              | C = Q<br>C = S                   | D = R<br>D = P                   |  |  |  |  |  |
|           | (d) A = S                                                                 | B = R                                                                                                                                              | C = Q                            | D = P                            |  |  |  |  |  |
|           | (u) A = 5                                                                 |                                                                                                                                                    | gous series                      | D = 1                            |  |  |  |  |  |
| 22.       | What is the response                                                      | ible for the chemical re                                                                                                                           |                                  |                                  |  |  |  |  |  |
| <i></i> . |                                                                           | ibic for the chemical re                                                                                                                           |                                  | /                                |  |  |  |  |  |
|           | (a) electrons<br>(b) atom<br>(c) proton<br>(d) reactive functional groups |                                                                                                                                                    |                                  |                                  |  |  |  |  |  |
| 22        | (c) proton                                                                | formula of Homology                                                                                                                                |                                  |                                  |  |  |  |  |  |
| 23.       |                                                                           | formula of Homologus                                                                                                                               |                                  |                                  |  |  |  |  |  |
| 24        | (a) $C_n H_{2n+1} H$                                                      | (b) $C_n H_{2n-1} H$                                                                                                                               | (c) $C_n H_{2n} H$               | (d) $C_n H_{2n+2} H$             |  |  |  |  |  |
| 24.       | _                                                                         | what is the difference                                                                                                                             |                                  | (1) 10                           |  |  |  |  |  |
|           | (a) 12                                                                    | (b) 14                                                                                                                                             | (c) 16                           | (d) 18                           |  |  |  |  |  |
| 25.       |                                                                           | -                                                                                                                                                  |                                  | of the following will increases? |  |  |  |  |  |
|           | (a) B.P/M.P                                                               | (b) solubility                                                                                                                                     | (c) density                      | (d) all                          |  |  |  |  |  |
| 26.       |                                                                           | ring exist in gas and liq                                                                                                                          | -                                |                                  |  |  |  |  |  |
|           | (a) ethane                                                                | (b) propane                                                                                                                                        | (c) butane                       | (d) pentane                      |  |  |  |  |  |
| 27.       | Among the followin                                                        | g, which isnot an exan                                                                                                                             | nple of a homologous             | series ?                         |  |  |  |  |  |
|           | (a) CH <sub>3</sub> OH, CH <sub>3</sub> C                                 | H <sub>2</sub> OH, CH <sub>3</sub> | НС                               |                                  |  |  |  |  |  |
|           | (b) $CH_4$ , $C_2H_6$ , $C_3H_8$ , $C_4H_{10}$                            |                                                                                                                                                    |                                  |                                  |  |  |  |  |  |
|           | (c) CH <sub>3</sub> CHO, CH <sub>3</sub>                                  | 3CH <sub>2</sub> CHO, CH <sub>3</sub> CH <sub>2</sub> C                                                                                            | CH <sub>2</sub> CHO              |                                  |  |  |  |  |  |
|           | (d) CH <sub>3</sub> COOH, CI                                              | H <sub>3</sub> COOCH <sub>3</sub> , CH <sub>3</sub> CO                                                                                             | OCH <sub>2</sub> CH <sub>3</sub> |                                  |  |  |  |  |  |
| 28.       | In homologous serie                                                       | es :                                                                                                                                               |                                  |                                  |  |  |  |  |  |
|           | (a) Molecular formula is same (b) Structural formula is same              |                                                                                                                                                    |                                  |                                  |  |  |  |  |  |
|           | (c) Physical propert                                                      | ies are same                                                                                                                                       | (d) General form                 | ula is same                      |  |  |  |  |  |
|           |                                                                           |                                                                                                                                                    | 112                              |                                  |  |  |  |  |  |

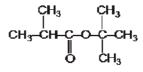
| 29.   | Which of the following is the first member of ester homologous series ?<br>(a) Ethyl ethanoate (b) Methyl ethanoate                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | (c) Methyl methanoate (d) Ethyl methanoate                                                                                                                                                                                  |
| 30.   | Which of the following is the triad of a homologous series -                                                                                                                                                                |
| 20.   | (a) CH <sub>3</sub> NH <sub>2</sub> , (CH <sub>3</sub> ) <sub>2</sub> NH, (CH <sub>3</sub> ) <sub>3</sub> N (b) C <sub>2</sub> H <sub>5</sub> OH, (CH <sub>3</sub> ) <sub>2</sub> CHOH, (CH <sub>3</sub> ) <sub>3</sub> COH |
|       | (c) Both the above (d) $CH_2 = CH_2, CH_3 - CH = CH_2, C_2H_5 - CH = CH_2$                                                                                                                                                  |
| 31.   | What is not true about homologous series ?                                                                                                                                                                                  |
| • - • | (A) All the members have similar chemical properties                                                                                                                                                                        |
|       | (B) They have identical physical properties                                                                                                                                                                                 |
|       | (C) They can be represented by a general formula                                                                                                                                                                            |
|       | (D) Adjacent members differ in molecular mass by 1                                                                                                                                                                          |
|       | Isomerism Structural and sterioisomers                                                                                                                                                                                      |
| 32.   | The total possible number of chain isomers for the molecular formula C5H12 would be –                                                                                                                                       |
|       | (A) 3 (B) 2 (C) 4 (D) 5                                                                                                                                                                                                     |
| 33.   | 2-chlorobutane & 3-chlorobutane are-                                                                                                                                                                                        |
|       | (A) Positional isomers (B) Chain isomers (C) Geometrical (D) None                                                                                                                                                           |
| 34.   | Which one of the following pairs are called position isomers –                                                                                                                                                              |
|       | (a) CH <sub>2</sub> (OH) CH <sub>2</sub> COOH & CH <sub>3</sub> - CH (OH) COOH                                                                                                                                              |
|       | (B) C <sub>2</sub> H <sub>5</sub> OH & CH <sub>3</sub> OH (c) (C <sub>2</sub> H <sub>5</sub> ) <sub>2</sub> CO & CH <sub>3</sub> COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                          |
|       | (D) All the above                                                                                                                                                                                                           |
| 35.   | Which of the following are isomers -                                                                                                                                                                                        |
|       | (A) Ethanol and ethoxy ethane (B) Methanol and methoxy methane                                                                                                                                                              |
|       | (C) Propanoic acid and ethyl acetate (D) Propionaldehyde and acetone                                                                                                                                                        |
| 36.   | How many aliphatic carbonyl compounds are possible having the molecular formula $C_5H_{10}O$ –                                                                                                                              |
|       | (A) 4 (B) 5 (C) 6 (D) 7                                                                                                                                                                                                     |
| 37.   | The formula $C_4H_8O_2$ represents –                                                                                                                                                                                        |
|       | (A) Only an acid (B) Only an ether                                                                                                                                                                                          |
|       | (C) Only an alcohol (D) Both ether and alcohol                                                                                                                                                                              |
| 38.   | The number of ether metamers represented by the formula $C_4H_{10}O$ is -                                                                                                                                                   |
|       | (A) 4 (B) 3 (C) 2 (D) 1                                                                                                                                                                                                     |
| 39.   | The phenomenon involving the migration of a proton to give two structural isomers in equilibrium with each other is known is $-$                                                                                            |
|       | (A) Matamerism (B) Tautomerism (C) Cis trans isomerism(D) Stereo isomerism                                                                                                                                                  |
| 40.   | In keto-enol tautomerism of dicarbonyl compounds, the enol form is preferred in contrast to the keto-form, this is due to                                                                                                   |
|       | (A) Presence of carbonyl group on each side of $-CH_2$ -                                                                                                                                                                    |
|       | (B) Resonance stabilization of enol form                                                                                                                                                                                    |
|       | (C) Presence of methylene group                                                                                                                                                                                             |
|       | (D) Rapid chemical exchange.                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                             |
|       |                                                                                                                                                                                                                             |

mirror\Desktop\\CHEMISTRY\Unit - 9 Chemistry Apurav (2nd Proof)



mirror\Desktop\\CHEMISTRY\Unit-9Chemistry Apurav(2nd Proof)

- 55. Which is an acyclic compound :
- (A) Methane (B) Benzene (C) Pyrrole (D) Cyclobutane
- 56. Match the following :


|     |                            |                 | I Compounds      | I                  | Class of compounds     |                                   |
|-----|----------------------------|-----------------|------------------|--------------------|------------------------|-----------------------------------|
|     |                            | (A)             | $\bigtriangleup$ | (P)                | Saturated compound     |                                   |
|     |                            | (B)             | _ <b>o</b> _     | (q)                | Heterocyclic compound  |                                   |
|     |                            | (C)             | $\triangle$      | n                  | Unsaturated compound   |                                   |
|     |                            | (D)             | С                | (s)                | Hydrocarbon            |                                   |
|     | (A) $A \rightarrow p, s,$  | B→              | р                |                    | $C \rightarrow r, s$   | $D \rightarrow q$                 |
|     | (B) $A \rightarrow p, s,$  |                 | -                |                    | $C \rightarrow r$ ,    | $D \rightarrow s$                 |
|     | (C) $A \rightarrow p, q,$  |                 |                  |                    | $C \rightarrow r, s,$  | $D \rightarrow p$                 |
|     | (D) $A \rightarrow p, s,$  | $B \rightarrow$ | p, q,            |                    | $C \rightarrow r, s,$  | $D \rightarrow p$                 |
| 57. | The compound which         | has o           | one isopropyl g  | grou               | p is :                 |                                   |
|     | (A) 2,2,3,3-tetramethyl    | pent            | ane              | $\dot{\mathbf{x}}$ | (B) 2,2-dimethyl p     | pentane                           |
|     | (C) 2,2,3-trimethyl pen    | tane            |                  | <u>.</u> .         | (D) 2-methyl pent      | ane                               |
| 58. | How many secondary         | carbo           | on atoms does    | met                | hyl cyclopropane l     | nave?                             |
|     | (A) None                   | (B)             | One              |                    | (C) Two                | (D) Three                         |
| 59. | $C_5H_{12}$ gives types of | of alk          | yl groups.       |                    |                        |                                   |
|     | (A) 5                      | (B)             | 8                | 1                  | (C) 6                  | (D) 4                             |
| 60. | The total number of se     | econd           | ary H-atoms in   | n the              | e structure given be   | elow are : $(CH_3)_2CHCH_2C_2H_5$ |
|     | (A) 1                      | (B)             | 4                |                    | (C) 3                  | (D) 2                             |
| 61. | iso-octane contains        |                 |                  |                    |                        |                                   |
|     | (A) 5 primary. one see     | conda           | ary. & two tert  | iary.              | C atoms.               |                                   |
|     | (B) 4 prim. 2 sec. &       | one t           | er. C atoms.     |                    |                        |                                   |
|     | (C) 5 (1°C). one (2°C      | .), or          | e (3°C) & on     | e (4               | °C) atoms.             |                                   |
|     | (D) 4 (1°C). two (2°C      | C), or          | ne (3°C) & on    | e (4               | <sup>o</sup> C) atoms. |                                   |
| 62. | Which of the following     | g radi          | cals are bivale  | nt?                |                        |                                   |
|     | (a) Ethylidene             | (b) <b>'</b>    | Vinylidene       |                    | (c) Benzyl             | (d) Methylidyne                   |
|     | (A) a , d                  |                 | a,b,d            |                    | (C) a , b              | (D) a, b, c                       |
|     |                            |                 |                  |                    |                        |                                   |

115

mirror\Desktop\\CHEMISTRY\Unit-9Chemistry Apurav (2nd Proof)

**Trivials name** 

63. The common name of given ester is -



(A) neo butyl iso butyrate

(C) t- butyl iso butyrate

64. Ethyl methyl vinyl amine has the structure -

> $CH_3CH_2 - N - CH_2CH = CH_2$ (A) Ċн,

сн<sub>2</sub> – сн – м– сн – сн<sub>2</sub> Î Сн, (C)

- 65. The derived name of  $(CH_3)_4C$  is – (A) Tetramethylmethane (C) Neopentane The structural formula of isopropyl carbinol is-66. (A)  $(CH_3)_2$  CHOH
  - (C) (CH<sub>3</sub>)<sub>2</sub> CH.CH<sub>2</sub>OH
- 67. The derived name of iso-valeric acid is. (A) Ethyl methyl acetic acid (C) trimethyl acetic acid

- (B) t-butyl n- butyrate
- (D) iso butyl iso butyrate
- (B)

(B) 2,2-Dimethylpropane (D) None of these

(B) CH<sub>3</sub>-CHOH-CH<sub>2</sub>-CH<sub>3</sub> (D)  $(CH_3)_3COH$ 

(B) iso-propyl acetic acid

(D) all are

68. Derived name of CH2=CH-CH2CO-CH3 is -(A) 1-Pentene-1-one (B) Allyl methyl ketone (C) 4-Pentene-2-one (D) Vinyl acetone

- CH<sub>3</sub>-CH(CH<sub>3</sub>)CH<sub>2</sub>-C=C-CH=CH<sub>2</sub> its derived name is 69. (A) 6-methyl-1-heptenyne-3 (B) iso-butyl vinyl acetylene
  - (C) iso hexynyl ethylene

(D) None

# **IUPAC NAME**

70. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is (A) -SO<sub>3</sub>H, -COOH, -CONH<sub>2</sub>, -CHO (B) –CHO, –COOH, –SO<sub>3</sub>H, –CONH<sub>2</sub>

116

- (C) -CONH<sub>2</sub>, -CHO, -SO<sub>3</sub>H, -COOH (D) -COOH, -SO<sub>3</sub>H, -CONH<sub>2</sub>, -CHO
- I.U.P.A.C. name of (CH<sub>3</sub>)<sub>2</sub>CH-CH<sub>2</sub>-CH<sub>2</sub>Br is 71. (A) 1-bromo pentane (B) 2-methyl-4-bromo pentane (C) 1-bromo-3-methyl butane
  - (D) 2-methyl-3-bromo propane
- Which one of the following I.U.P.A.C. name is correct ? 72.
  - (A) 2-Methyl-3-ethyl pentane
    - (C) 3-Ethyl-2-methyl pentane
- (B) 2-Ethyl-3-methyl pentane
- (D) 3-Methyl-2-ethyl pentane

mirror\Desktop\\CHEMISTRY\Unit-9ChemistryApurav(2nd Proof)

73. The IUPAC name of this compound is :

(A) 2-fluoro-4-chloro-2,4-diethyl pentane

(C) 3-chloro-5-fluoro-3,5-dimethyl heptane

(B) 3-fluoro-5-chloro-3-methyl-5-ethyl hexane (D) 3,5-dimethyl-5-fluoro-3-chloro heptanes

74. The IUPAC name of the compound is:

### CH<sub>3</sub>CHCH<sub>2</sub>CH<sub>3</sub> I C<sub>6</sub>H<sub>5</sub>

(A) 2-cyclohexyl butane

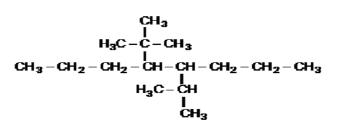
(B) 2-phenyl butane (D) 3-phenyl butane

(C) 3-cyclohexyl butane

What is the correct IUPAC name for the following compound ? 75.

(A) 3,4 - Dimethyl -3-n - propyl nonane (C) 6,7- Dimethyl -7- ethyl decane

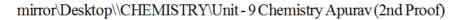
(B) 6, 7 - Dimethyl -2- n- propyl nonane (D) 4- Ethyl- 4, 5 - dimethyl decane


76. The IUPAC name of is -



(A) 2-bromo-4-isopropylpentane (C) 2-bromo-4, 5-dimethylhexane (B) 2, 3-dimethyl-5-bromohexane (D) 5-bromo-2, 3-dimethylhexane

Give the IUPAC name of 77.


78.



(A) 4-isopropyl-5-ter. butyl octane

(B) 4-ter. butyl-5-isopropyl octane

- (C) 2-methyl-3-propyl-4-ter. butyl heptane (D) 2, 2-dimethyl-3-propyl-4-isopropyl heptanes
  - The IUPAC name of the compound Br (Cl) CH.CF3 is : (A) haloethane (B) 1, 1, 1- trifluoro-2-bromo-2- chloroethane
  - (C) 2-bromo-2-chloro-1, 1, 1- trifluoroethane (D) 1-bromo-1-chloro-2, 2, 2- trifloro ethane



79. The correct IUPAC name of is :

(A) 2-methyl butanoic acid

(C) 2- carboxy-1- butene

(B) 2-ethyl- 2-propenoic acid

(B) 3-methyl butanoyl chloride

(D) 1-chloro-3-methyl pentanone

(D) None of the above

80. The correct IUPAC name of :

#### CH<sub>3</sub>-CH<sub>2</sub>-CH-CH<sub>2</sub>COCI | CH<sub>3</sub>

- (A) 3-methyl pentanoyl chloride
- (C) 1-chloro-3-ethyl butanone
- 81. The IUPAC name of N ? C -CH<sub>2</sub>-CH<sub>2</sub>-OH is;
  - (A) 1-hydroxy ethanenitrile
  - (C) 2-hydroxy ethyl cyanide
- 82. The IUPAC name of is :

- (B) 3-hydroxy propanenitrile(D) 1-hydroxy-2-cyanoethane
- CH<sub>2</sub> CHO

# OHC-CH2-CH2-CH2-CH2-CH0

- (A) 4, 4-di(formylmethyl) butanal(C) hexane-3-acetal-1, 6-dial
- (B) 2-(formylmethyl) butane-1,4-dicarbaldehyde

- (D) 3-(formylmethyl) hexane-1, 6-dial
- 83. The suffix of the principal group, the prefixes for the other groups and the name of the parent in the structure are given by the set :
   HO-CH<sub>2</sub>-CH-CH=C-CH<sub>2</sub>-C-C-CH
  - (A) -oic acid, chloro, hydroxy, oxo, methyl, 4-heptene
  - (B) -oic acid, chloro, hydroxy, methyl, oxo, 4-heptene
  - (C) -one, carboxy, chloro, methyl, hydroxy, 4-heptene
  - (D) -one, carboxy, chloro, methyl, hydroxy, 4-heptene
- 84. The IUPAC name of compound

#### соон – сн – соон | Соон

(B) Propane trioic acid

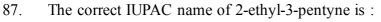
(C) Tributanoic acid

(A) Tricarboxy methane

(D) 2- carboxy propanedioic acid

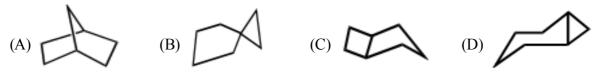
- 85. The IUPAC name of is -
- о он
  - (B) 4-hydroxy-2-pentanone

(D) pentane-2-one-4-ol

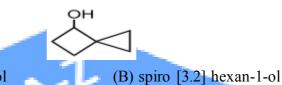

(C) pentane-4-ol-2-one

(A) 4-oxo-2-pentanol

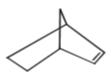
86.


The I.U.P.A.C name of the compound having structure is

- (A) 3-methyl-2-ethyl butene-1(C) 3-ethyl-3-methyl butene-1
- (B) 2-ethyl-3-methyl butene-1(D) ethyl isopropyl ethane
- mirror\Desktop\\CHEMISTRY\Unit 9 Chemistry Apurav (2nd Proof)




- (A) 3-methyl hexyne-4
- (C) 4-methyl hexyne-2


- (B) 4-ethyl pentyne-2
- (D) None of these
- 88. The name of the compound is -(A) bicyclo [2.2.1] octane (B) bicyclo [1.1.1] octane (C) 1, 4-bismethylenecyclohexane
  - (D) bicyclo [2.2.2] octane
- 89. Which of the following structures represents bicyclo [3.2.0] heptane -



90. The IUPAC name of is -

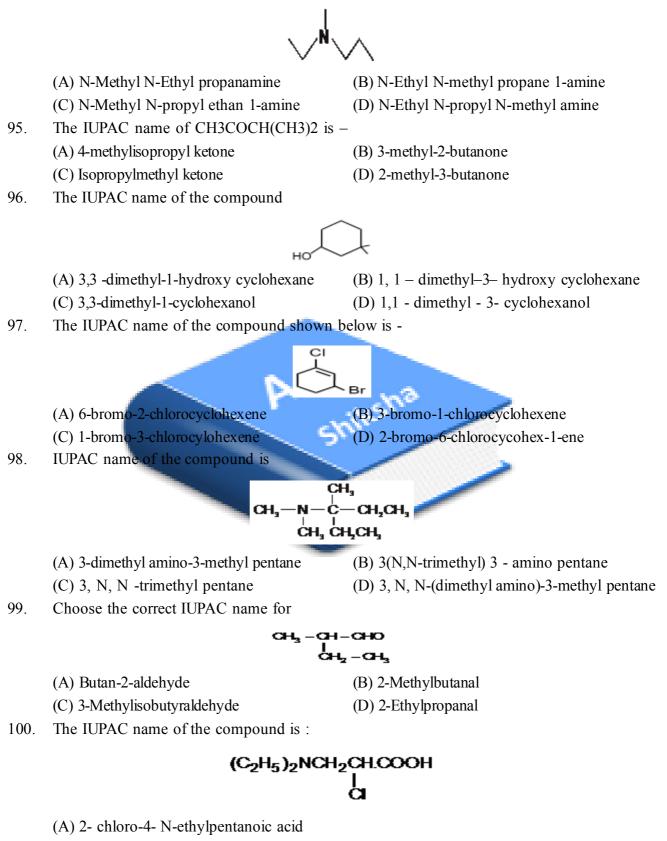


- (A) bicyclo [3.2.0] hexan-2-ol
- (C) spiro [3.2] hexan-4-ol
- 91. The IUPAC name of camphor is -
  - (A) 6-oxo-1,2,2- trimethyl bicyclo [2,2,1] heptane
  - (B) 1,7,7-trimethyl bicyclo [2,2,1] heptan-2-one
  - (C) 1,5,5-trimethyl bicyclo [2,1,1] hexan-2-one
  - (D) 1,7,7-trimethyl bicyclo [2,1,2] heptan-2-one
- 92. The IUPAC name of compound is -



119

(A) Bicyclo [2.2.1] hept-2-ene (C) Bicyclo [2.1.2] hept-2-ene


(B) Bicyclo [2.2.1] hept-5-ene (D) Bicyclo [1.2.2] hept-2-ene

(D) spiro [2.3] hexan-4-ol

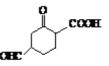
- 93. The IUPAC name of compound is -
  - (A) Spiro [5.3] nonane (C) Spiro [5.4] nonane



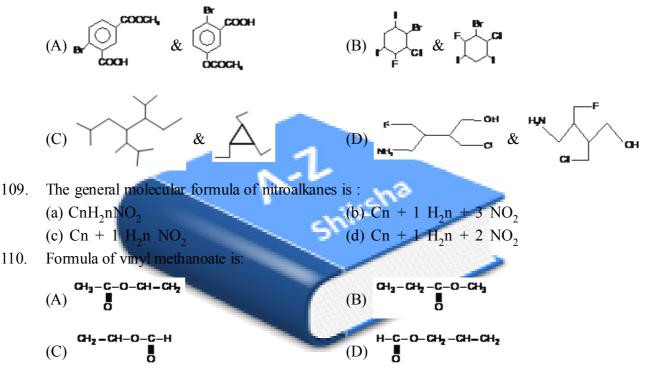
94. Write the correct IUPAC name of the following bond line formula :



- (B) 2- chloro-3- (N, N-diethyl amino)-propanoic acid
- (C) 2- chloro-2- oxo diethylamine
- (D) 2- chloro-2-carboxy-N-ethyl ethane


101. The IUPAC name of the compound is :

| 102. | <ul><li>(A) 4- cyano-4-methyl -2- oxo pentane</li><li>(C) 2, 2-dimethyl -4- oxo pentanenitrile</li><li>IUPAC name of is :</li></ul> | <ul><li>(B) 2-cyano-2-methyl-4-oxo pentane</li><li>(D) 4- cyano-4-methyl-2-pentanone</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 0110 OIL 011                                                                                                                        | au au au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | OHC - CH = CH -                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                     | ĊH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (A) 4-butyl-2,5-hexadien-1-al                                                                                                       | (B) 5-vinyloct-3-en-1-al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | (C) 5-vinyloct-5-en-8-al                                                                                                            | (D) 3-butyl-1,4-hexadien-6-al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 103. | The IUPAC name of is :                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | CH <sub>3</sub> – CH – Cl                                                                                                           | H <sub>2</sub> - C(CH <sub>3</sub> ) <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Ч                                                                                                                                   | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | <ul><li>(A) 2-methyl-2,4-dihydroxy propane</li><li>(C) 2-methyl-2,4-pentane diol</li></ul>                                          | (B) 2,2-dimethyl-4-hydroxy butanol<br>(D) 2 hydrowy 4.4 dimethyl hytanol 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 104. | The IUPAC name of the given compound i                                                                                              | (D) 2-hydroxy-4,4-dimethyl butanol-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 104. |                                                                                                                                     | N. Contraction of the second s |
|      | CHO                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | CH <sub>3</sub> —CH <sub>—</sub> CH—CH—                                                                                             | сн—сн—соон                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | Br                                                                                                                                  | ĊOCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | (A) 2-Bromo-4-carbamoyl-5-chloroformyl-3-                                                                                           | formylhexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (B) 5-Bromo-3-carbamoyl-2-chloroformyl-4-                                                                                           | formylhexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | (C) 4-Formyl-2-chloroformyl-5-carbamoyl-5-                                                                                          | bromohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (D) 2-Chloroformyl-3-carbamoyl-4-formyl-5-                                                                                          | - bromohexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 105. | The structure of 4-methylpentene-2 is                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (a) $(CH_3)_2CH$ — $CH_2CH = CH_2$                                                                                                  | (b) $(CH_3)_2CH$ — $CH = CH$ — $CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (c) $(CH_3)_2CH$ — $CH_2$ — $CH = CH_2$                                                                                             | (d) $(CH_3)_2C = CHCH_2CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 106. | The IUPAC name of the compound                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | CH2 CH                                                                                                                              | I—СН <sub>2</sub> ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | (a) 1, 2 - epoxy - 3 propanol                                                                                                       | (b) 1, 2 - oxa - 3 - propanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | (c) $2, 3 - epoxy - 1 - propanol$                                                                                                   | (d) 2, 3 - epoxy allyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |


121

mirror\Desktop\\CHEMISTRY\Unit - 9 Chemistry Apurav (2nd Proof)

107. The correct IUPAC name of the compound



- (a) 5 carboxy 3 oxocyclohexane carboxaldehyde
- (b) 2 carboxy 5 formylcyclohexane
- (c) 4 formyl 2 oxocyclohexane carboxylic acid
- (d) 4- carboxy 3 oxocyclohexanal
- 108. Which of the following pair/s have same IUPAC naming



111. The IUPAC name of the compound



- (a) 4 methyl cyclopent 1 en 2 ol (b) 5 methyl cyclopent 2 en 1 ol
- (c) 2 methyl cyclopent 4 en 1 ol (d) 3 methyl cyclopent 1 en 2 ol

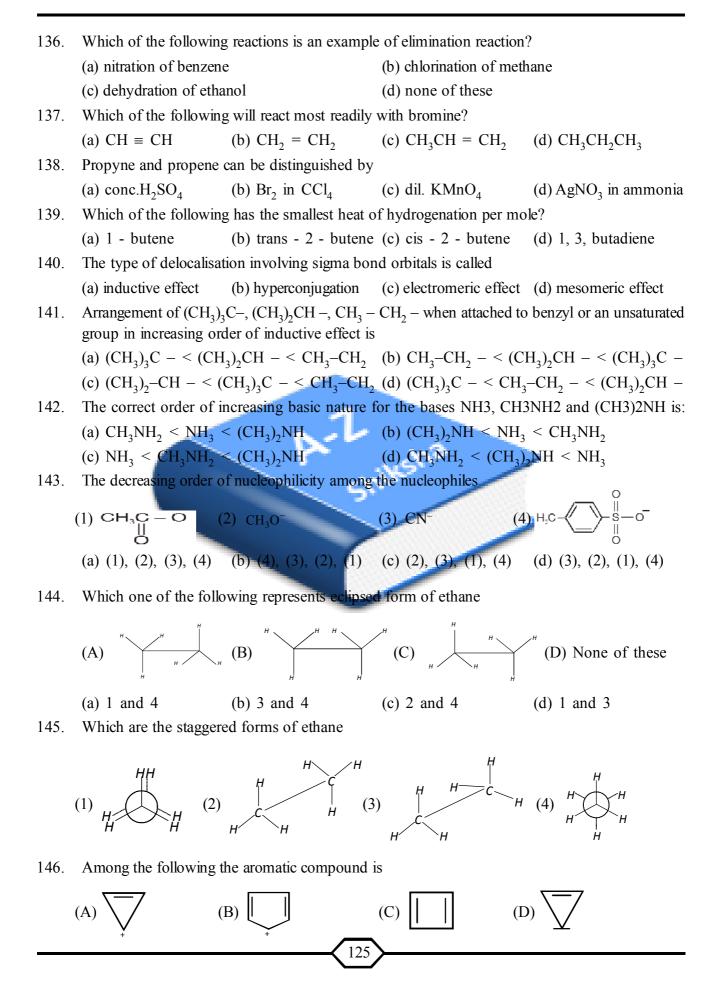
# Reasoning

(A) If both Statement- I and Statement- II are true, and Statement - II is the correct explanation of Statement- I.

(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement - I.

122

(C) If Statement - I is true but Statement - II is false.


(D) If Statement - I is false but Statement - II is true.

| 112. | Statement I: Ethane and propane are homologues.                                                                         |
|------|-------------------------------------------------------------------------------------------------------------------------|
|      | Statement II: Ethane and propane belongs to same general formula.                                                       |
|      | (A) A (B) B (C) C (D) D                                                                                                 |
| 113. | Statement I: The general IUPAC name of esters is alkyl alkanoate.                                                       |
|      | Statement II: The simplest ester is HCOOCH3                                                                             |
|      | (A) A (B) B (C) C (D) D                                                                                                 |
| 114. | Statement I : $\bigcirc^{C=N}$ is called cyclohexancarbonitrile.                                                        |
|      | Statement II : It is an aromatic compound.                                                                              |
|      | (A) A (B) B (C) C (D) D                                                                                                 |
| 115. | Statement I : The IUPAC name of $CH_3$ -CH=CH-C=C-H is pent-3-en-1-yne and not pent-2-en-4-yne.                         |
|      | Statement II: Lowest locant rule for multiple bond is preferred.                                                        |
|      | (A) A (B) B (C) C (D) D                                                                                                 |
| 116. | Statement I : The IUPAC name for the compound $C_6H_5COOCH_2CH_2COOH$ is 3-benzoyloxy propanoic acid.                   |
|      | Statement II : $C_6H_5CH_2O$ is called benzoyloxy group.                                                                |
|      | (A) A (B) B (C) C (D) D                                                                                                 |
| 117. | STATEMENT -1 4-Methylphenol and phenylmethanol are functional isomers.                                                  |
|      | STATEMENT -2 Isomeric alcohols and phenols have different chemical properties and therefore                             |
|      | they are functional isomers                                                                                             |
|      | (A) A (B) B (C) C (D) D                                                                                                 |
| 118. | Fission Freeradical Carbocation and anion Electrolf\philic ion and nucleophilic ion                                     |
| 110. | Which of the following statements is wrong?<br>(A) a tertiary free radical is more stable than a secondary free radical |
|      | (B) a secondary free radical is more stable than a primary free radical                                                 |
|      | (C) atertiary carbonium ion is more stable than a secondary carbonium ion                                               |
|      | (D) a primary carbonium ion is more stable than a secondary carbonium ion                                               |
| 119. | Carbon free radicals are -                                                                                              |
|      | (A) Diamagnetic (B) Paramagnetic (C) Ferromagnetic (D) Non magnetic                                                     |
| 120. | Arrange the following nucleophiles in the order of their nucleophilic strength –                                        |
|      | (A) $OH - > CH_3COO - > OCH > C_6H_5O -$                                                                                |
|      | (B) $CH_3COO- < C_6H_5O- < OCH < OH-$                                                                                   |
|      | (C) $C_6H_5O- < CH_3COO- < CH_3O- < OH-$                                                                                |
|      | (D) $CH_3COO - < C_6H_5O - < OH - < CH_3O$                                                                              |
| 121. | The nucleophilicities of CH3-, NH2-, OH- and F- decrease in the order -                                                 |
|      | (A) $CH_3 - > NH_2 - > OH - > F -$                                                                                      |
|      | (B) $OH- > NH_2- > CH_3- > F-$                                                                                          |
|      | (C) $NH_2^- > OH > CH_3^- > F$                                                                                          |
|      | (D) $CH_3^- > OH^- > F^- > NH_2^-$                                                                                      |
|      |                                                                                                                         |
|      |                                                                                                                         |

mirror\Desktop\\CHEMISTRY\Unit-9Chemistry Apurav (2nd Proof)

| 122. |                                   | ng is the strongest nucle                                        |                                                      |                                       |  |  |
|------|-----------------------------------|------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|--|--|
| 100  | (A) OH-                           | (B) CH <sub>3</sub> OH                                           | 5                                                    | (D) CH <sub>3</sub> O-                |  |  |
| 123. |                                   |                                                                  | of electrons in the valence $(x) \in \mathbb{R}^{n}$ |                                       |  |  |
| 104  | (a) carbocations                  | (b) carbanions                                                   | (c) free radicals                                    | (d) none of these                     |  |  |
| 124. |                                   | -chlorine bond produce                                           |                                                      |                                       |  |  |
|      | (a) two free radicals             |                                                                  | (b) two carbonium ior                                |                                       |  |  |
| 105  | (c) two carbanions                |                                                                  | (d) one cation and on                                | e anion                               |  |  |
| 125. |                                   | $C \longrightarrow Br \rightarrow (CH_3)C + +$                   | Br– is an example of                                 |                                       |  |  |
|      | (a) homolytic fission             |                                                                  | (b) heterolytic fission                              |                                       |  |  |
|      | (c) cracking                      |                                                                  | (d) none of the above                                |                                       |  |  |
| 126. |                                   | ng has the highest nucleo                                        | ophilicity?                                          |                                       |  |  |
|      | (a) F-                            | (b) OH-                                                          | (c) CH <sub>3</sub> -                                | (d) NH <sub>2</sub> -                 |  |  |
| 127. | Which species repres              | ents the electrophile in a                                       | aromatic nitration?                                  |                                       |  |  |
|      | (a) NO <sub>2</sub> -             | (b) NO <sub>2</sub> +                                            | (c) NO <sub>2</sub>                                  | (d) NO <sub>3</sub> –                 |  |  |
| 128. | The most stable carbo             | onium ion among the fo                                           | llowing is                                           |                                       |  |  |
|      | (a) $C_6H_5$ C+ HC <sub>6</sub> H | I <sub>5</sub>                                                   | (b) $C_6H_5 C+ H_2$                                  |                                       |  |  |
|      | (c) $CH_3 + CH_2$                 | - 1                                                              | (d) $C_6H_5$ $CH_2$ $C+H_2$                          |                                       |  |  |
| 129. |                                   | ng is the least stable car                                       | banion?                                              |                                       |  |  |
|      | (a) HC $\equiv$ C                 | (b) (C <sub>6</sub> H <sub>5</sub> ) <sub>3</sub> C <sup>-</sup> | (c) $(CH_3)_3 C^-$                                   | (d) CH <sub>3</sub> <sup>-</sup>      |  |  |
| 130. | Which of the followi              | ng is the most stable fro                                        | ee radical?                                          |                                       |  |  |
|      | (A) $C_6H_5CH_2CH_2$              | (B) $C_6H_5CHCH_3$                                               | (C) СН <sub>3</sub> СН <sub>2</sub>                  | (D) CH <sub>3</sub> CHCH <sub>3</sub> |  |  |
| 131. |                                   |                                                                  | rbocation (carbonium ior                             | )?                                    |  |  |
|      | (a) $CH_3 CH_2^+$                 | (b) (CH <sub>3</sub> ) <sub>2</sub> C+H                          | (c) (CH <sub>3</sub> ) <sub>3</sub> C+               | (d) $C_6H_5 C + H_2$                  |  |  |
| 132. | ~ =                               | ng order of stability of t                                       | 5 5                                                  | 0 5 2                                 |  |  |
|      |                                   |                                                                  | CH <sub>3</sub> and (ii) CH <sub>3</sub> —C+H        | -COCH <sub>3</sub>                    |  |  |
|      |                                   | (b) $ii > iii > i$                                               |                                                      | (d) $ii > i > iii$                    |  |  |
| 133. | Find the no. of funct             | ional groups and no. of                                          | f chiral centres respective                          |                                       |  |  |
|      |                                   |                                                                  | -                                                    | -                                     |  |  |
|      |                                   |                                                                  | 0                                                    |                                       |  |  |
|      |                                   |                                                                  | NH OH                                                |                                       |  |  |
|      |                                   | 0 0 0                                                            | ¥°¥°                                                 |                                       |  |  |
|      |                                   |                                                                  | öö                                                   |                                       |  |  |
|      | (A) 5, 4                          | (B) 8, 3                                                         | (C) 6, 3                                             | (D) 6, 2                              |  |  |
|      | Inductive effe                    | ect Electromeric effect                                          | Resonance and hyper                                  | conjugation                           |  |  |
| 134. |                                   | er of given groups is -                                          |                                                      |                                       |  |  |
|      | (a) CN                            | (b) NO <sub>2</sub>                                              | $(c) - NH_2$                                         | (d) F                                 |  |  |
|      | (A) $b > a > d > c$               |                                                                  | (C) $c > b > d > a$                                  | (D) $c > b > a > d$                   |  |  |
| 135. |                                   |                                                                  | KBr is an example of                                 |                                       |  |  |
|      | (a) free radical substi           |                                                                  | (b) electrophilic substitution                       |                                       |  |  |
|      | (c) nucleophilic substi           |                                                                  | (d) rearrangement read                               |                                       |  |  |
|      | , / <b>1</b>                      | 124                                                              |                                                      |                                       |  |  |

mirror\Desktop\\CHEMISTRY\Unit-9Chemistry Apurav(2nd Proof)



mirror\Desktop\\CHEMISTRY\Unit - 9Chemistry Apurav(2nd Proof)

| (A) $(CH_3)_2CHOH$ (B) $(CH_3)_5C \cdot OH$<br>(C) $CH_3 \cdot CH_2 - OH$ (D) $CH_3 - CH_2 - O - CH_2 - CH_3$<br>148. How many carbon atoms in the molecule are asymmetric<br>(a) 1 (b) 2 (c) 3 (d) None of these<br>149. Which of the following compounds will show metamerism<br>(a) $CH_3COOC_2H_5$ (b) $C_3H_5 - S - C_3H_5$ (c) $CH_3 - O - CH_3$ (d) $CH_3 - O - C_2H_5$<br>150. The C - C bond length of the following molecules is in the order<br>(a) $C_3H_6 > C_2H_4 > C_6H_6 > C_3H_2$ (b) $C_3H_2 > C_3H_4 < C_6H_6 < C_3H_6$<br>(c) $C_3H_6 > C_2H_2 > C_6H_6 > C_3H_4$ (d) $C_2H_4 > C_2H_6 > C_3H_2 > C_6H_6$<br>(e) $C_2H_6 > C_3H_6 > C_3H_4$ (d) $C_2H_4 > C_2H_6 > C_3H_2 > C_6H_6$<br>151. In the reaction a chiral centre is produced. This product would be<br>(a) Laevorotatory (b) Meso compound (c) Dextrotatory (d) Racemic mixture<br>152. Cyclic hydrocarbon molecule 'A has all the carbon and hydrogen in a single plane. All the carbon-carbon bonds are of same length less than 1.54A, but more than 1.34A. The bond ang will be<br>(a) 109°28' (b) 100° (c) 180° (d) 120°<br><b>ANSWER KEY</b><br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>3<br>2<br>2<br>4<br>4<br>b 29<br>5<br>4<br>3<br>4<br>4<br>b 29<br>5<br>4<br>3<br>4<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>5<br>5<br>6<br>6<br>6<br>5<br>4<br>5<br>5<br>5<br>6<br>6<br>7<br>5<br>5<br>7<br>6<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 147. V | Which o            | of the t           | followi         | ing giv        | es mo       | st stab | le carb  | ocatio | n by d            | ehydra             | ation          |                     |                 |         |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|--------------------|-----------------|----------------|-------------|---------|----------|--------|-------------------|--------------------|----------------|---------------------|-----------------|---------|-------------------|
| 148. How many carbon atoms in the molecule are asymmetric       (a) 1       (b) 2       (c) 3       (d) None of these         149. Which of the following compounds will show metamerism       (a) CH <sub>3</sub> COOC <sub>2</sub> H <sub>3</sub> (b) C <sub>2</sub> H <sub>5</sub> - S-C <sub>2</sub> H <sub>5</sub> (c) CH <sub>3</sub> - O-CH <sub>3</sub> (d) CH <sub>3</sub> - O-C <sub>2</sub> H <sub>5</sub> 150. The C - C bond length of the following molecules is in the order       (a) C <sub>2</sub> H <sub>6</sub> > C <sub>2</sub> H <sub>4</sub> > C <sub>6</sub> H <sub>6</sub> > C <sub>2</sub> H <sub>2</sub> (b) C <sub>2</sub> H <sub>2</sub> < C <sub>2</sub> H <sub>4</sub> < C <sub>6</sub> H <sub>6</sub> < C <sub>2</sub> H <sub>6</sub> (c) C <sub>3</sub> H <sub>6</sub> > C <sub>2</sub> H <sub>3</sub> > C <sub>6</sub> H <sub>6</sub> > C <sub>2</sub> H <sub>4</sub> (d) C <sub>3</sub> H <sub>4</sub> > C <sub>2</sub> H <sub>4</sub> > C <sub>6</sub> H <sub>6</sub> < C <sub>2</sub> H <sub>6</sub> (e) C <sub>3</sub> H <sub>6</sub> > C <sub>2</sub> H <sub>3</sub> > C <sub>6</sub> H <sub>6</sub> > C <sub>3</sub> H <sub>4</sub> (d) C <sub>3</sub> H <sub>4</sub> > C <sub>2</sub> H <sub>2</sub> > C <sub>6</sub> H <sub>6</sub> 151. In the reaction a chiral centre is produced. This product would be       (a) Laevorotatory       (b) Meso compound       (c) Dextrorotatory       (d) Racemic mixture         152. Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All the carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang will be       (a) 109°28'       (b) 100°       (c) 180°       (d) 120° <b>ANSWER KEY</b> 1       b       26       d       53       d       76       b       103       c       152       d         1       b       26       d       51       b       126       c       151       d       127       c       152       d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A     | ) (CH <sub>3</sub> | $)_2 CHe$          | ОН              |                |             |         |          | (B) (  | $(CH_3)_3$        | C · OH             | [              |                     |                 |         |                   |
| (a) 1 (b) 2 (c) 3 (d) None of these<br>149. Which of the following compounds will show metamerism<br>(a) $CH_3COOC_3H_5$ (b) $C_2H_5 - S - C_3H_5$ (c) $CH_3 - O - CH_3$ (d) $CH_3 - O - C_2H_5$<br>150. The C - C bond length of the following molecules is in the order<br>(a) $C_2H_6 > C_2H_4 > C_6H_6 > C_2H_2$ (b) $C_3H_2 < C_2H_4 < C_6H_6 < C_2H_6$<br>(c) $C_2H_6 > C_2H_2 > C_6H_6 > C_2H_4$ (d) $C_2H_4 > C_2H_6 > C_2H_2 > C_6H_6$<br>151. In the reaction a chiral centre is produced. This product would be<br>(a) Laevorotatory (b) Meso compound (c) Dextrototatory (d) Racemic mixture<br>152. Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All th<br>carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang<br>will be<br>(a) 109°28' (b) 100° (c) 180° (d) 120°<br><b>ANSWER KEY</b><br>1 b 20 c d 51 b 76 b 1002 a 127 b 152 d<br>3 c 28 d 53 d 78 c 103 c 128 a 1<br>4 b 29 c 64 c 79 b 104 b 129 c 1<br>5 d 30 d 55 a 80 a a 105 b 130 b 1<br>6 d 31 b 56 d 81 a 10 56 b 130 b 1<br>6 d 31 a b 56 d 81 a b 106 c 131 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 37 a 62 c 87 c 112 b 137 c 1<br>1 a 36 d 61 c 88 b 110 c 135 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 88 b 111 b 136 c 1<br>1 a 1 a 36 d 61 c 88 b 111 b 136 c 1<br>1 a 1 a 2 c 37 a 62 c 87 b 122 b 143 c 1<br>1 a 1 a 2 c 37 a 63 c 2 c 87 b 112 b 137 c 1<br>1 a 1 a 2 c 37 a 63 c 2 c 87 b 114 c 139 b 1<br>1 a 1 a 2 c 37 a 63 c 2 c 87 b 112 b 137 c 1<br>1 a 2 c 37 a 63 c 2 c 87 b 112 b 137 c 1<br>1 a 2 c 37 a 63 c 2 c 87 b 112 b 137 c 1<br>1 a 2 c 37 a 63 c 2 c 87 b 112 b 137 c 1<br>1 a 2 c 37 a 63 c 2 c 87 b 120 b 143 c 1<br>1 a 13 c 138 b 63 c 2 88 d 113 b 138 d 1<br>1 a c 43 c 68 b 93 b 113 b 144 b 1<br>1 a 12 c 44 d 66 b 93 b 112 b 144 c 1<br>1 a 146 c 1<br>1 a 146 c 77 d 95 b 122 c 147 b 1<br>1 a 146 c 1<br>1 a 146 c 77 b 99 b 124 d 149 b 1<br>1 b 144 b 1<br>1 b 144 b 1<br>1 b 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C     | ) CH <sub>3</sub>  | ·CH <sub>2</sub> · | -OH             |                |             |         |          | (D)    | CH <sub>3</sub> – | CH <sub>2</sub> -  | - O – C        | ℃H <sub>2</sub> – ( | CH <sub>3</sub> |         |                   |
| (a) 1 (b) 2 (c) 3 (d) None of these<br>149. Which of the following compounds will show metamerism<br>(a) $CH_{3}COOC_{2}H_{5}$ (b) $C_{2}H_{5}-S-C_{2}H_{5}$ (c) $CH_{3}-O-CH_{3}$ (d) $CH_{3}-O-C_{2}H_{5}$<br>150. The C - C bond length of the following molecules is in the order<br>(a) $C_{2}H_{6} > C_{2}H_{4} > C_{6}H_{6} > C_{2}H_{2}$ (b) $C_{2}H_{2} < C_{2}H_{4} < C_{6}H_{6} < C_{2}H_{6}$<br>(c) $C_{3}H_{6} > C_{3}H_{2} > C_{6}H_{6} > C_{2}H_{4}$ (d) $C_{3}H_{4} > C_{3}H_{6} > C_{2}H_{5} > C_{6}H_{6}$<br>151. In the reaction a chiral centre is produced. This product would be<br>(a) Laevorotatory (b) Meso compound (c) Dextrootatory (d) Racemic mixture<br>152. Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All th<br>carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang<br>will be<br>(a) 109°28' (b) 100° (c) 180° (d) 120°<br><b>ANSWER KEY</b><br><b>1</b> b 26 d 51 b 76 b 401 c 126 c 151 d<br>2 c 27 d 52 c 77 b 102 a 127 b 152 d<br>3 c 28 d 53 d 26 c 79 b 104 b 129 c 1<br>5 d 30 d 55 a 80 a 105 b 130 b 1<br>6 d 31 b 56 d 82 d 107 c 132 d 1<br>1 a 36 d 61 c 86 b 111 b 136 c 1<br>1 a 36 d 61 c 86 b 111 b 138 d 1<br>1 a 36 d 61 c 86 b 111 b 138 d 1<br>1 a 36 d 61 c 88 d 113 b 138 d 1<br>1 a 36 d 61 c 88 d 113 b 138 d 1<br>1 a 36 d 61 c 88 d 113 b 138 d 1<br>1 a 2 c 38 b 63 c 88 d 113 b 138 d 1<br>1 a 2 c 38 b 63 c 88 d 113 b 138 d 1<br>1 a 2 c 38 b 63 c 88 d 113 b 138 d 1<br>1 a 2 c 44 c 67 b 92 a 117 c 142 c 1<br>1 a 16 c 141 b 1<br>1 a 16 c 141 b 1<br>1 a 16 c 141 c 139 b 1<br>1 a 2 c 44 c 67 b 92 a 117 c 142 c 1<br>1 a 14 c 39 b 64 b 88 c 114 c 139 b 1<br>1 a 16 c 444 c 69 b 93 b 112 b 144 b 1<br>1 a 16 c 444 c 69 b 93 b 112 b 144 c 1<br>1 a 446 c 77 c 17 c 96 c 121 a 146 c 1<br>1 a 446 c 77 c 17 c 97 b 122 c 147 b 1<br>1 a 446 c 77 c 17 c 98 d 123 a 148 b 1<br>1 b 144 b 1<br>1 c 142 c 17 d 142 c 17 c 142 c 1<br>1 a 446 c 77 c 17 c 97 b 122 c 147 b 1<br>1 a 144 c 149 b 1<br>1 b 144 c 149 b 1<br>1 b 144 c 149 b 1<br>1 c 144 c 147 c 12 c 97 b 124 c 147 b 1<br>1 c 144 c 149 b 1<br>1 c 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148. H | low ma             | any ca             | rbon a          | toms i         | n the r     | noleci  | ıle are  | asymi  | netric            |                    |                |                     |                 |         |                   |
| 149. Which of the following compounds will show metamerism<br>(a) $CH_{3}COOC_{2}H_{5}$ (b) $C_{2}H_{5}-S-C_{2}H_{5}$ (c) $CH_{3}-O-CH_{3}$ (d) $CH_{3}-O-C_{2}H_{5}$<br>150. The C - C bond length of the following molecules is in the order<br>(a) $C_{2}H_{6} > C_{2}H_{4} > C_{6}H_{6} > C_{2}H_{2}$ (b) $C_{2}H_{2} < C_{2}H_{4} < C_{6}H_{6} < C_{2}H_{6}$<br>(c) $C_{2}H_{6} > C_{2}H_{2} > C_{6}H_{6} > C_{2}H_{4}$ (d) $C_{3}H_{4} > C_{2}H_{6} < C_{2}H_{2} < C_{6}H_{6}$<br>151. In the reaction a chiral centre is produced. This product would be<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>152. Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All th<br>carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang<br>will be<br>(a) 109°28' (b) 100° (c) 180° (d) 120°<br><b>ANSWER KEY</b><br>1 b 26 d 51 b 76 b 101 c 126 c 151 d<br>2 c 27 d 52 c 77 b 102 a 127 b 152 d<br>3 c 28 d 53 d 78 c 103 c 128 a<br>4 b 29 c 44 c 79 b 104 b 129 c<br>5 d 30 d 55 a 80 a 105 b 130 b<br>6 d 31 b 56 d 83 c 106 c 131 c<br>7 c 32 a 57 d 82 d 107 c 132 d<br>1 a 36 d 61 c 88 b 110 c 135 c<br>11 a 36 d 61 c 88 b 110 c 135 c<br>11 a 36 d 61 c 88 b 111 b 136 c<br>12 c 37 a 62 c 87 c 112 b 137 c<br>13 c 38 b 63 c 88 d 113 b 138 d<br>14 c 39 b 64 b 88 c 114 c 139 b<br>15 d 40 b 165 a 90 d 115 a 140 b<br>16 b 411 d 66 c 91 a 116 c 141 b<br>17 d 42 d 67 b 92 a 117 c 142 c<br>13 c 48 d 73 c 68 b 91 b 191 b 144 b<br>16 b 411 d 66 c 91 a 116 c 141 b<br>17 d 42 d 67 b 92 a 117 c 142 c<br>13 c 44 d 69 b 59 b 94 b 119 b 144 b<br>16 b 41 d 66 c 71 c 96 c 121 a 146 a<br>17 d 42 d 67 h 92 c 31 d 120 b 145 c<br>21 a 446 c 71 c 96 c 121 a 146 a<br>22 d 47 d 72 c 97 b 122 c 147 b<br>23 a 48 d 73 c 98 d 123 a 148 b<br>24 b 49 a 77 b 99 b 124 d 149 b<br>25 d 40 7 d 72 c 97 b 122 c 147 b<br>26 d 45 c 70 d 95 b 120 b 1445 c<br>27 d 47 d 72 c 97 b 122 c 147 b<br>28 d 149 b<br>29 d 44 d 99 b 94 b 144 d 149 b<br>20 d 445 c 70 d 95 b 122 d 144 d 149 b<br>20 d 45 c 70 d 95 b 122 c 147 b<br>21 a 446 c 71 c 96 c 121 a 146 a<br>22 d 47 d 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8     | a) 1               | -                  |                 | (b)            | 2           |         |          | (c) 3  | 3                 |                    |                | (d) N               | one of          | these   | ,                 |
| 150. The C - C bond length of the following molecules is in the order<br>(a) $C_2H_6 > C_2H_4 > C_6H_6 > C_2H_2$ (b) $C_2H_2 < C_2H_4 < C_6H_6 < C_2H_6$<br>(c) $C_2H_6 > C_2H_2 > C_6H_6 > C_2H_4$ (d) $C_2H_4 > C_2H_6 > C_2H_2 > C_6H_6$<br>(151. In the reaction a chiral centre is produced. This product would be<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) 109°28' (b) 100° (c) 180° (d) 120°<br><b>ANSWER KEY</b><br>$1 \frac{b}{26} \frac{26}{d} \frac{51}{51} \frac{b}{2} \frac{76}{c} \frac{b}{101} \frac{101}{c} \frac{126}{122} \frac{c}{c} \frac{151}{d} \frac{d}{120}$<br>$4 \frac{b}{29} \frac{29}{c} \frac{44}{54} \frac{c}{c} \frac{79}{b} \frac{b}{104} \frac{101}{b} \frac{122}{c} \frac{c}{c} \frac{152}{d} \frac{d}{13} \frac{c}{c} \frac{128}{c} \frac{a}{c} \frac{1}{28} \frac{a}{c} \frac{1}{c} \frac{1}{28} \frac{a}{c} \frac{1}{c} \frac$ | `      | ·                  | of the f           | ollowi          | ng con         | npoun       | ds will | show     | ~ /    |                   |                    |                |                     |                 |         |                   |
| (a) $C_2H_6 > C_2H_4 > C_6H_6 > C_2H_2$ (b) $C_2H_2 < C_2H_4 < C_6H_6 < C_2H_6$<br>(c) $C_2H_6 > C_2H_2 > C_6H_6 > C_2H_4$ (d) $C_2H_4 > C_2H_6 > C_2H_2 > C_6H_6$<br>(i) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) 109°28' (b) 100° (c) 180° (d) 120°<br><b>ANSWER KEY</b><br>$1 \ b \ 26 \ d \ 51 \ b \ 76 \ b \ 100 \ c) 180° (d) 120°$ <b>ANSWER KEY</b><br>$1 \ b \ 26 \ d \ 51 \ b \ 76 \ b \ 100 \ c) 120 \ c \ 122 \ b \ 152 \ d \ 32 \ c \ 77 \ b \ 102 \ a \ 127 \ b \ 152 \ d \ 32 \ c \ 77 \ b \ 102 \ a \ 127 \ b \ 152 \ d \ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (8     | a) CH              | 3COO               | $C_2H_5$        | (b)            | $C_2H_5$    | -S-     | $C_2H_5$ | (c)    | CH <sub>3</sub> – | O-Cl               | $H_3$          | (d) C               | $CH_3 - C$      | $O-C_2$ | $H_5$             |
| (c) $C_2H_6 > C_2H_2 > C_6H_6 > C_2H_4$ (d) $C_2H_4 > C_2H_6 > C_2H_2 > C_6H_6$<br>(3) Laevorotatory (b) Meso compound (c) Dextronatory (d) Racemic mixture<br>(a) Laevorotatory (b) Meso compound (c) Dextronatory (d) Racemic mixture<br>(a) Laevorotatory (b) Meso compound (c) Dextronatory (d) Racemic mixture<br>(c) Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All the<br>carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond and<br>will be<br>(a) $109^{\circ}28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (d) $120^{\circ}$<br><b>ANSWER KEY</b><br>$1 \ b \ 26 \ d \ 51 \ b \ 76 \ b \ 77 \ b \ 102 \ a \ 122 \ b \ 152 \ d \ 3 \ c \ 128 \ a \ 14 \ b \ 29 \ c \ 54 \ c \ 79 \ b \ 104 \ b \ 129 \ c \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 16 \ 133 \ c \ 152 \ d \ 153 \ d \ 16 \ 153 \ d \ 160 \ b \ 133 \ c \ 152 \ d \ 111 \ a \ 36 \ d \ 61 \ c \ 88 \ d \ 113 \ b \ 138 \ d \ 133 \ c \ 152 \ d \ 111 \ a \ 36 \ d \ 61 \ c \ 88 \ d \ 113 \ b \ 138 \ d \ 133 \ c \ 16 \ 111 \ a \ 36 \ d \ 111 \ a \ 36 \ d \ 111 \ b \ 136 \ c \ 111 \ a \ 36 \ d \ 61 \ c \ 88 \ d \ 113 \ b \ 138 \ d \ 111 \ b \ 136 \ c \ 111 \ a \ 36 \ d \ 61 \ c \ 88 \ d \ 113 \ b \ 138 \ d \ 111 \ b \ 136 \ c \ 111 \ a \ 36 \ d \ 61 \ c \ 88 \ d \ 113 \ b \ 138 \ d \ 114 \ c \ 139 \ b \ 116 \ c \ 114 \ b \ 116 \ c \ 114 \ c \ 139 \ b \ 116 \ c \ 114 \ b \ 116 \ c \ 114 \ b \ 116 \ c \ 114 \ c \ 118 \ c \ 114 \ c \ 116 \ c \ 114 \ c \ 118 \ c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50. T  | ĥe C -             | C boi              | nd leng         | gth of         | the fo      | llowin  | g mole   | ecules | is in th          | he ord             | er             |                     |                 |         |                   |
| 151. In the reaction a chiral centre is produced. This product would be<br>(a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>(a) Laevorotatory molecule 'A' has all the carbon and hydrogen in a single plane. All the<br>carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang<br>will be<br>(a) $109^{\circ}28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (d) $120^{\circ}$<br><b>ANSWER KEY</b><br>1 b 26 d 51 b 77 b 102 a 127 b 152 d<br>3 c 28 d 53 d 75 c 103 c 128 a<br>4 b 29 c 54 c 79 b 104 b 129 c<br>5 d 30 d 55 a 80 a 105 b 130 b<br>6 d 31 b 56 d 81 b 106 c 131 c<br>7 c 32 a 57 d 82 d 107 c 132 d<br>7 c 32 a 57 d 82 d 107 c 132 d<br>1 a 36 d 61 c 86 b 111 b 136 c<br>11 a 36 d 61 c 86 b 111 b 136 c<br>11 a 36 d 61 c 88 d 113 b 138 d<br>10 c 35 d 60 b 85 b 110 c 135 c 1<br>11 a 36 d 61 c 88 d 113 b 138 d<br>11 a 36 d 61 c 88 d 113 b 138 d<br>10 c 35 d 60 c 134 b 108 d 133 c<br>11 a 36 d 61 c 88 d 113 b 138 d<br>10 c 35 d 60 c 134 b 108 d 133 c<br>11 a 36 d 61 c 88 d 113 b 138 d<br>12 c 13 c 28 d 107 c 112 b 137 c<br>13 c 38 b 63 c 88 d 113 b 138 d<br>14 c 39 b 64 b 89 c 114 c 139 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 b 65 a 90 d 115 a 140 b<br>15 d 40 c 167 b 92 a 117 c 142 c<br>18 c 43 c 68 b 93 b 118 d 143 c<br>19 c 44 d 69 b 94 b 119 b 144 b<br>10 c 21 a 146 a<br>10 c 21 a 146 b<br>10 c 145 c 70 d 95 b 120 b 144 b<br>10 c 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (8     | a) $C_2H$          | $I_6 > C_2$        | $_{2}H_{4} > 0$ | $C_{6}H_{6}$ : | $> C_2 H_2$ | 2       |          | (b)    | $C_2H_2$ ·        | < C <sub>2</sub> H | $_{4} < C_{6}$ | $H_{6} < C$         | $C_2H_6$        |         |                   |
| 1       In the reaction a chiral centre is produced. This product would be       (a) Laevorotatory       (b) Meso compound       (c) Dextrorotatory       (d) Racemic mixture         152.       Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All th carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang will be         (a) $109^{\circ}28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (d) $120^{\circ}$ <b>ANSWER KEY</b> 1       b       26       d       51       b       76       b       101       c       122       b       152       d         1       b       26       d       51       b       77       b       102       a       122       b       152       d         3       c       28       d       53       d       76       c       103       c       128       a         4       b       29       c       54       6       30       d       55       a       106       c       131       c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ((     | c) C,H             | $I_6 > C_6$        | ,H, >           | $C_6H_6$       | > C,H       | 1       |          | (d)    | $C_2H_4$          | > C,H              | $_{5} > C_{2}$ | H, >0               | $C_6H_6$        |         |                   |
| (a) Laevorotatory (b) Meso compound (c) Dextrorotatory (d) Racemic mixture<br>Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All the<br>carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond and<br>will be<br>(a) $109^{\circ}28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (d) $120^{\circ}$<br><b>ANSWER KEY</b><br>$\frac{1}{2}$ (c) $28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (c) $122^{\circ}$ (c) $122^{\circ}$<br><b>ANSWER KEY</b><br>$\frac{1}{2}$ (c) $28'$ (d) $51$ (c) $76$ (b) $401$ (c) $122$ (c) $151$ (d)<br>3 (c) $28$ (c) $77$ (c) $102$ (a) $127$ (b) $152$ (d)<br>4 (b) $29$ (c) $54$ (c) $79$ (b) $104$ (b) $129$ (c) $152$ (c)<br>$5$ (d) $30$ (d) $55$ (c) $80^{\circ}$ (c) $133$ (c) $128$ (c) $133$ (c) $128$<br>$6$ (d) $31$ (c) $56$ (d) $81$ (c) $103$ (c) $132$ (d) $120^{\circ}$<br>$5$ (d) $30$ (d) $55$ (c) $80^{\circ}$ (c) $1330$ (c) $128$ (c) $132$<br>$6$ (d) $31$ (c) $56$ (d) $81$ (c) $100^{\circ}$ (c) $132$ (d) $120^{\circ}$<br>$8$ (d) $33$ (c) $59$ (c) $84$ (d) $109$ (c) $132$ (c) $120^{\circ}$<br>$8$ (d) $33$ (c) $59$ (c) $84$ (d) $109$ (c) $133$ (c) $120^{\circ}$<br>9 (c) $22$ (c) $37$ (c) $22$ (c) $87$ (c) $112$ (c) $113$ (c) $11313 (c) 35 (c) 60^{\circ} (c) 114 (c) 135 (c) 111^{\circ}13 (c) 38 (c) 88 (c) 88 (c) 111 (c) 136 (c) 111^{\circ}13 (c) 37 (c) 132 (c) 114^{\circ} (c) 133 (c) 113^{\circ} (c) 114^{\circ} (c) 139^{\circ} (c) 113^{\circ} ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | , <u>2</u>         | 0 1                |                 | 0 0            | 2           |         |          |        |                   |                    |                | -                   |                 |         |                   |
| 152. Cyclic hydrocarbon molecule 'A' has all the carbon and hydrogen in a single plane. All the carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond and will be (a) $109^{\circ}28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (d) $120^{\circ}$ (e) $180^{\circ}$ (e) $180^{\circ}$ (f) $120^{\circ}$ (g) $120^{\circ}$                                                                                                                                                                                                            |        |                    |                    |                 |                |             | •       |          | -      |                   |                    |                | (d) R:              | acemic          | mixtu   | Ire               |
| carbon-carbon bonds are of same length less than 1.54Å, but more than 1.34Å. The bond ang will be<br>(a) $109^{\circ}28'$ (b) $100^{\circ}$ (c) $180^{\circ}$ (d) $120^{\circ}$<br><b>ANSWER KEY</b> $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | `      | /                  |                    | 2               | . ,            |             |         |          | . /    |                   | -                  | ·              | ~ /                 |                 |         |                   |
| (a) $109^{\circ}28'$ (b) $100'$ (c) $180'$ (d) $120'$<br><b>ANSWER KEY</b><br>$\frac{1}{2}$ (c) $226$ (c) $120$ (c) $120'$<br><b>ANSWER KEY</b><br>$\frac{1}{2}$ (c) $226$ (c) $120$ (c) $120$ (c) $120'$<br>2 (c) $226$ (c) $120$ (c) $120'12$ (c) $226$ (c) $120$ (c) $120'12$ (c) $226$ (c) $120$ (c) $120'12$ (c) $226$ (c) $120'$ (c) $120'12$ (c) $226$ (c) $120'$ (c) $120'120'$ (c) $120'$ (c) $120'$ (c) $120'$ (c) $120'120'$ (c) $120'$ (c) $120'$ (c) $120'$ (c) $120'$ (c) $120'130'$ (c) $120'$ (c) $120'$ (c) $120'$ (c) $120'$ (c) $120'$ (c) $120'14'$ (c) $120'$ (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c      | arbon-o            |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         |                   |
| 1       b       26       d       51       b       76       b       401       c       126       c       151       d         2       c       27       d       52       c       77       b       102       a       127       b       152       d         3       c       28       d       53       d       76       c       103       c       128       a       -         4       b       29       c       54       c       79       b       104       b       129       c       -       -         5       d       30       d       55       a       80       a       105       b       130       b       -       -         6       d       31       b       56       d       82       d       107       c       131       c       -       -         7       c       32       a       57       d       82       d       1007       c       133       c       -       -         9       b       34       c       59       b       84       d       109       b       134<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                    | יסר <sup>0</sup>   | $\leq$          | (b)            | $100^{0}$   | P>      | - 1-     | (a)    | 1000              |                    |                | (4) 1               | $\mathbf{n}_0$  |         |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2     | i) 109             | 28                 |                 | (0)            | 100         | r       |          | (0)    | 100               |                    | ~              | (a) 1.              | 20              |         |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                    |                    |                 |                |             | AN      | ISWF     | CRK    | EY                | /                  |                |                     |                 |         |                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 1                  | b                  | 26              | d              | 51          |         |          |        |                   | с                  | 126            | с                   | 151             | d       | 1                 |
| 4b29c-54c $79$ b104b129c.5d30d55-a80a105b130b.6d31b56d $81$ b106c131c.7c32a57d82d107c132d.8d33a58c83b108d133c.9b34c59b84d109b134a.10c35d60b85b110c135c.11a36d61c86b111b136c.12c37a62c87c112b137c.13c38b63c88d113b138d.14c39b64b89c114c139b15d40b65a90d115a140b15d40b65a90d115a140b16b41d66c91a116<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 2                  | с                  | 27              |                |             |         |          | b      |                   | а                  |                | b                   |                 | d       | ]                 |
| 5d30d55a80a105b130b $\ldots$ 6d31b56d81b106c131c $\ldots$ 7c32a57d82d107c132d $\ldots$ 8d33a58c83b108d133c $\ldots$ 9b34c59b84d109b134a $\ldots$ 10c35d60b85b110c135c $\ldots$ 11a36d61c86b111b136c $\ldots$ 12c37a62c87c112b137c $\ldots$ 13c38b63c88d113b138d $\ldots$ 14c39b64b89c114c139b $\ldots$ 15d40b65a90d115a140b $\ldots$ 15d40b65a90d115a140b $\ldots$ 16b41d66c91a116c141b $\ldots$ 19c44d69b94b119b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                    |                    |                 | d              |             | d       | 78       |        |                   |                    |                | а                   |                 |         |                   |
| 6d31b56d81b106c131c $\cdots$ 7c32a57d82d107c132d $\cdots$ 8d33a58c83b108d133c $\cdots$ 9b34c59b84d109b134a $\cdots$ 10c35d60b85b110c135c $\cdots$ 11a36d61c86b111b136c $\cdots$ 12c37a62c87c112b137c $\cdots$ 13c38b63c88d113b138d $\cdots$ 14c39b64b89c114c139b $\cdots$ 15d40b65a90d115a140b $\cdots$ 15d41d66c91a116c141b $\cdots$ 16b41d66c91a116c141b $\cdots$ 17d42d67b92a117c142c $\cdots$ 18c43c70d95b120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | -                 |
| 7c32a57d82d107c132d $\ldots$ 8d33a58c83b108d133c $\ldots$ 9b34c59b84d109b134a $\ldots$ 10c35d60b85b110c135c $\ldots$ 11a36d61c86b111b136c $\ldots$ 12c37a62c87c112b137c $\ldots$ 13c38b63c88d113b138d $\ldots$ 14c39b64b89c114c139b $\ldots$ 15d40b65a90d115a140b $\ldots$ 16b41d66c91a116c141b $\ldots$ 17d42d67b92a117c142c $\ldots$ 19c44d69b94b119b144b $\ldots$ 20d45c70d95b120b145c $\ldots$ 21a46c71c96c121 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><math>\left\{ \right.</math></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | $\left\{ \right.$ |
| 8       d       33       a       58       c       83       b       108       d       133       c          9       b       34       c       59       b       84       d       109       b       134       a          10       c       35       d       60       b       85       b       110       c       135       c          11       a       36       d       61       c       86       b       111       b       136       c          12       c       37       a       62       c       87       c       112       b       137       c          13       c       38       b       63       c       88       d       113       b       138       d          14       c       39       b       64       b       89       c       114       c       139       b          15       d       40       b       65       a       90       d       115       a       140       b         16      b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | 1                 |
| 9b $34$ c $59$ b $84$ d $109$ b $134$ a10c $35$ d $60$ b $85$ b $110$ c $135$ c11a $36$ d $61$ c $86$ b $111$ b $136$ c12c $37$ a $62$ c $87$ c $112$ b $137$ c13c $38$ b $63$ c $88$ d $113$ b $138$ d14c $39$ b $64$ b $89$ c $114$ c $139$ b15d $40$ b $65$ a $90$ d $115$ a $140$ b16b $411$ d $66$ c $911$ a $116$ c $141$ b17d $422$ d $67$ b $92$ a $117$ c $142$ c18c $43$ c $68$ b $93$ b $118$ d $143$ c20d $45$ c $70$ d $95$ b $120$ b $145$ c21a $46$ c $71$ c $96$ c $121$ a $146$ a22d $47$ d $72$ c $97$ b $122$ c $147$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |                    |                 |                |             |         | 1        |        | 1                 |                    |                |                     |                 |         | 1                 |
| 11a36d61c86b111b136c $\ldots$ 12c37a62c87c112b137c $\ldots$ 13c38b63c88d113b138d $\ldots$ 14c39b64b89c114c139b $\ldots$ 15d40b65a90d115a140b $\ldots$ 16b41d66c91a116c141b $\ldots$ 17d42d67b92a117c142c $\ldots$ 18c43c68b93b118d143c $\ldots$ 20d45c70d95b120b145c $\ldots$ 21a46c71c96c121a146a $\ldots$ 22d47d72c97b122c147b $\ldots$ 23a48d73c98d123a148b $\ldots$ 24b49a74b99b124d149b $\ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                    |                    |                 |                |             |         |          |        |                   | -                  |                |                     |                 |         | 1                 |
| 12c $37$ a $62$ c $87$ c $112$ b $137$ c $13$ c $38$ b $63$ c $88$ d $113$ b $138$ d $14$ c $39$ b $64$ b $89$ c $114$ c $139$ b $15$ d $40$ b $65$ a $90$ d $115$ a $140$ b $16$ b $41$ d $66$ c $91$ a $116$ c $141$ b $17$ d $42$ d $67$ b $92$ a $117$ c $142$ c $18$ c $43$ c $68$ b $93$ b $118$ d $143$ c $20$ d $45$ c $70$ d $95$ b $120$ b $145$ c $21$ a $466$ c $71$ c $96$ c $121$ a $146$ a $22$ d $47$ d $72$ c $97$ b $122$ c $147$ b $23$ a $48$ d $73$ c $98$ d $123$ a $148$ b $24$ b $49$ a $74$ b $99$ b $124$ d $149$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 10                 | с                  | 35              | d              | 60          | b       | 85       | b      | 110               | С                  |                | с                   |                 |         | j                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 11                 | а                  | 36              | d              | 61          | С       | 86       | b      | 111               | b                  | 136            | с                   |                 |         | ]                 |
| 14       c       39       b       64       b       89       c       114       c       139       b          15       d       40       b       65       a       90       d       115       a       140       b          16       b       41       d       66       c       91       a       116       c       141       b          17       d       42       d       67       b       92       a       117       c       142       c          18       c       43       c       68       b       93       b       118       d       143       c          19       c       44       d       69       b       94       b       119       b       144       b          20       d       45       c       70       d       95       b       120       b       145       c          21       a       46       c       71       c       96       c       121       a       146       a          22       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                    | С                  |                 | а              |             | С       |          | С      |                   | b                  |                | С                   |                 |         | 4                 |
| 15       d       40       b       65       a       90       d       115       a       140       b          16       b       41       d       66       c       91       a       116       c       141       b          17       d       42       d       67       b       92       a       117       c       142       c          18       c       43       c       68       b       93       b       118       d       143       c          19       c       44       d       69       b       94       b       119       b       144       b          20       d       45       c       70       d       95       b       120       b       145       c          21       a       46       c       71       c       96       c       121       a       146       a          22       d       47       d       72       c       97       b       122       c       147       b          23       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | 4                 |
| 16       b       41       d       66       c       91       a       116       c       141       b          17       d       42       d       67       b       92       a       117       c       142       c          18       c       43       c       68       b       93       b       118       d       143       c          19       c       44       d       69       b       94       b       119       b       144       b          20       d       45       c       70       d       95       b       120       b       145       c          21       a       46       c       71       c       96       c       121       a       146       a          22       d       47       d       72       c       97       b       122       c       147       b          23       a       48       d       73       c       98       d       123       a       148       b          24       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | ┥                 |
| 17       d       42       d       67       b       92       a       117       c       142       c          18       c       43       c       68       b       93       b       118       d       143       c          19       c       44       d       69       b       94       b       119       b       144       b          20       d       45       c       70       d       95       b       120       b       145       c          21       a       46       c       71       c       96       c       121       a       146       a          22       d       47       d       72       c       97       b       122       c       147       b          23       a       48       d       73       c       98       d       123       a       148       b          24       b       49       a       74       b       99       b       124       d       149       b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | 4                 |
| 18       c       43       c       68       b       93       b       118       d       143       c          19       c       44       d       69       b       94       b       119       b       144       b          20       d       45       c       70       d       95       b       120       b       145       c          21       a       46       c       71       c       96       c       121       a       146       a          22       d       47       d       72       c       97       b       122       c       147       b          23       a       48       d       73       c       98       d       123       a       148       b          24       b       49       a       74       b       99       b       124       d       149       b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | 1                 |
| 19c44d69b94b119b144b20d45c70d95b120b145c21a46c71c96c121a146a22d47d72c97b122c147b23a48d73c98d123a148b24b49a74b99b124d149b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | 1                 |
| 21a46c71c96c121a146a22d47d72c97b122c147b23a48d73c98d123a148b24b49a74b99b124d149b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 19                 | с                  | 44              | d              |             | b       | 94       | b      |                   | b                  | 144            | b                   |                 |         | ]                 |
| 22d47d72c97b122c147b23a48d73c98d123a148b24b49a74b99b124d149b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 20                 | d                  | 45              | С              | 70          | d       | 95       | b      | 120               | b                  | 145            | С                   |                 |         | ]                 |
| 23       a       48       d       73       c       98       d       123       a       148       b       b         24       b       49       a       74       b       99       b       124       d       149       b       b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                    |                    |                 |                |             | С       |          |        |                   | а                  |                | а                   |                 |         | 4                 |
| 24 b 49 a 74 b 99 b 124 d 149 b .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | -                  |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | -                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | -                  |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 |         | {                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                    |                    |                 |                |             |         |          |        |                   |                    |                |                     |                 | ļ       | {                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 25                 | u                  | 50              | L              | 75          | u       |          | U U    | 123               | U                  | 120            | C                   | <u> </u>        | L       | J                 |